CES-Fréchet modeling of farmer choices

Christophe Gouel

INRA

November 8, 2018

Model setup

- Risk-neutral farmer/landowner facing the choice of allocating its land endowment x₁ to crops.
- Crops are indexed by $k = l \in \mathcal{K} \equiv \{1, \dots, K\}$
- Crop production requires 2 bundles of inputs:
 - **1** *R* inputs that are partial substitutes (e.g., land, fertilizers and water), with land indexed r = 1, with substitution elasticity $0 < \sigma_k < 1$.
 - Ourspecified for now and corresponds to non-land value-added and is non substitutable to the first bundle.
- Land is heterogeneous and composed of a continuum of parcels indexed by ω defined over [0, 1].

Production function

$$Q_{k}(\omega) = \min\left\{\left[A_{1,k}(\omega)\left(x_{1,k}(\omega)\right)^{(\sigma_{k}-1)/\sigma_{k}} + \sum_{r=2}^{R}A_{r,k}\left(x_{r,k}(\omega)\right)^{(\sigma_{k}-1)/\sigma_{k}}\right]^{\sigma_{k}/(\sigma_{k}-1)}, N_{k}(\omega)/\nu_{k}\right\},\$$

- $A_{1,k}\left(\omega
 ight)\geq 0$ a parameter governing land productivity
- $A_{r,k} \ge 0$ with $r \ne 1$ are productivity shifters for the inputs affecting yields
- x_{r,k} (ω) is input demand,
- $N_k(\omega)$ is the value added demand,
- $\nu_k > 0$ is a productivity shifter for value added.

Price indexes

From the Leontief structure:

$$p_k = P_k^X + w\nu_k,$$

where P_k^X is the price of the first input bundle and w is the wage. From CES standard algebra,

$$P_{k}^{X} = \left[\left(A_{1,k} \left(\omega \right) \right)^{\sigma_{k}-1} \left(\pi_{1,k} \left(\omega \right) \right)^{1-\sigma_{k}} + \sum_{r=2}^{R} A_{r,k}^{\sigma_{k}-1} \pi_{r,k}^{1-\sigma_{k}} \right]^{1/(1-\sigma_{k})} \right]^{1/(1-\sigma_{k})}$$

Then, we can express the land rents per hectare as:

$$\pi_{1,k}(\omega) = A_{1,k}(\omega) \left[\left(P_k^X \right)^{1-\sigma_k} - \sum_{r=2}^R A_{r,k}^{\sigma_k-1} \pi_{r,k}^{1-\sigma_k} \right]^{1/(1-\sigma_k)}, \\ = A_{1,k}(\omega) \underbrace{\left[\left(p_k - w\nu_k \right)^{1-\sigma_{ku}} - \sum_{\substack{r=2\\r=2}}^R A_{r,k}^{\sigma_k-1} \pi_{r,k}^{1-\sigma_k} \right]^{1/(1-\sigma_k)}}_{=r_k}.$$

Fréchet assumption

 $A_{1,k}(\omega)$ are i.i.d. from a Fréchet distribution with shape $\theta > 1$ and scale $\gamma A_{1,k} > 0$:

$$\Pr\left(A_{1,k}\left(\omega
ight)\leq a
ight)=\exp\left[-\left(rac{a}{\gamma A_{1,k}}
ight)^{- heta}
ight] \quad orall a\in\mathbb{R}_{>0}.$$

- γ ≡ (Γ (1 − 1/θ))⁻¹ a scaling parameter introduced so that A_{1,k} is the unconditional productivity of land, A_{1,k} = E [A_{1,k} (ω)], the productivity if all the land was planted with crop k.
- θ measures the dispersion of yields around their average A_{1,k}: a higher θ indicates more homogeneity and a lower θ more heterogeneity.

It follows that $\pi_{1,k}(\omega)$ is distributed Fréchet with parameters θ and $\gamma r_k A_{1,k}$

Crop choices

The probability that crop k is the most profitable on parcel ω is defined by

$$\lambda_{k} = \mathsf{Pr}\left(\pi_{1,k}\left(\omega
ight) \in rg\max_{l \in \mathcal{K}} \pi_{1,l}\left(\omega
ight)
ight),$$

= also the share of land allocated to k.

$$\lambda_k = \frac{\pi_{\mathbf{1},k}^{\theta}}{\sum_{l \in \mathcal{K}} \pi_{\mathbf{1},l}^{\theta}},$$

where $\pi_{1,k} \equiv r_k A_{1,k}$ denotes the unconditional land rents if all the land is planted with crop k.

Crop production

From CES and Fréchet algebra:

$$Q_{k} = x_{1}\lambda_{k} \left(\frac{r_{k}}{P_{k}^{X}}\right)^{\sigma_{k}} \mathsf{E}\left[A_{1,k}(\omega) | \pi_{1,k}(\omega) \in \underset{l \in \mathcal{K}}{\arg\max \pi_{1,l}(\omega)}\right],$$
$$= x_{1}A_{1,k}\lambda_{k}^{(\theta-1)/\theta} \left(\frac{r_{k}}{P_{k}^{X}}\right)^{\sigma_{k}}.$$

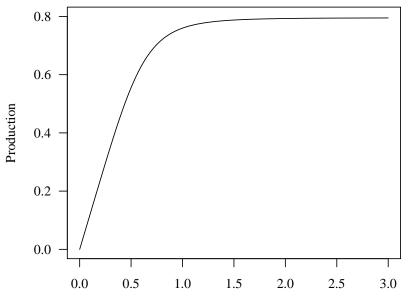
Input demand

$$x_{r,k} = \mathsf{E}\left(x_{r,k}(\omega) | \pi_{1,k}(\omega) \in \operatorname*{arg\,max}_{l \in K} \pi_{1,l}(\omega)\right),$$

which gives

$$\begin{aligned} x_{r,k} &= \mathsf{E}\left(A_{r,k}^{\sigma_{k}}Q_{k}\left(\omega\right)\left(\frac{\pi_{r,k}}{P_{k}^{X}}\right)^{-\sigma_{k}}|\pi_{1,k}\left(\omega\right)\in\arg\max_{l\in\mathcal{K}}\pi_{1,l}\left(\omega\right)\right),\\ &= A_{r,k}^{\sigma_{k}}\left(\frac{\pi_{r,k}}{P_{k}^{X}}\right)^{-\sigma_{k}}\mathsf{E}\left(Q_{k}\left(\omega\right)|\pi_{1,k}\left(\omega\right)\in\arg\max_{l\in\mathcal{K}}\pi_{1,l}\left(\omega\right)\right),\\ &= A_{r,k}^{\sigma_{k}}\left(\frac{\pi_{r,k}}{P_{k}^{X}}\right)^{-\sigma_{k}}Q_{k}.\end{aligned}$$

Parcel-level production function



Input level

In exact hat algebra

$$\begin{split} \hat{\lambda}_{k} &: \hat{\lambda}_{k} = \frac{\left(\hat{A}_{1,k}\hat{r}_{k}\right)^{\theta}}{\sum_{l \in \mathcal{K}} \lambda_{l} \left(\hat{A}_{1,l}\hat{r}_{l}\right)^{\theta}}, \\ \hat{x}_{r,k} &: \hat{x}_{r,k} = \left(\frac{\hat{\pi}_{r,k}}{\hat{P}_{k}^{X}}\right)^{-\sigma_{k}} \hat{Q}_{k}, \text{ for } r \geq 2 \\ \hat{Q}_{k} &: \hat{Q}_{k} = \hat{A}_{1,k} \hat{\lambda}_{k}^{(\theta-1)/\theta} \left(\frac{\hat{r}_{k}}{\hat{P}_{k}^{X}}\right)^{\sigma_{k}}, \\ \hat{P}_{k}^{X} &: \alpha_{k}^{X} \hat{P}_{k}^{X} = \hat{p}_{k} - (1 - \alpha_{k}^{X}) \hat{w}_{k}, \\ \hat{r}_{k} &: \hat{P}_{k}^{X} = \left(\alpha_{1,k}^{X} \hat{r}_{k}^{1 - \sigma_{k}} + \sum_{r=2}^{R} \alpha_{r,k}^{X} \hat{\pi}_{r,k}^{1 - \sigma_{k}}\right)^{1/(1 - \sigma_{k})}, \end{split}$$

3 extensions

- Multiple fields
- Non zero production at zero input
- More flexible acreage elasticities (not here).

Multiple fields

- There are f ∈ 1,..., F fields that are heterogeneous in their productivity. Fields can be defined on a grid or on land classes (GAEZ).
- There are no transport costs between fields, so that they all face the same prices, and labor productivity shifters ν_k are the same.

New equations

$$Q_{k}: Q_{k} = \sum_{f=1}^{F} \overbrace{x_{1}^{f} A_{1,k}^{f} (\lambda_{k}^{f})^{(\theta-1)/\theta} \left(\frac{r_{k}^{f}}{P_{k}^{X}}\right)^{\sigma_{k}}}^{q_{k}},$$

$$\lambda_{k}^{f}: \lambda_{k}^{f} = \frac{\left(A_{1,k}^{f} r_{k}^{f}\right)^{\theta}}{\sum_{l \in \mathcal{K}} \left(A_{1,l}^{f} r_{l}^{f}\right)^{\theta}},$$

$$r_{k}^{f}: P_{k}^{X} = \left[\left(r_{k}^{f}\right)^{1-\sigma_{k}} + \sum_{r=2}^{R} \left(A_{r,k}^{f}\right)^{\sigma_{k}-1} \pi_{r,k}^{1-\sigma_{k}}\right]^{1/(1-\sigma_{k})},$$

$$P_{k}^{X}: p_{k} = P_{k}^{X} + w\nu_{k},$$

$$x_{r,k}: x_{r,k} = \left(\frac{\pi_{r,k}}{P_{k}^{X}}\right)^{\sigma_{k}} \sum_{f=1}^{F} \left(A_{r,k}^{f}\right)^{\sigma_{k}} Q_{k}^{f}.$$

Elasticities

$$\frac{\partial \ln Q_k}{\partial \ln p_k} = \sum_{f=1}^F \frac{Q_k^f}{Q_k} \frac{1}{\alpha_k^X \alpha_{1,k}^{X,f}} \left[\left(\theta - 1\right) \left(1 - \lambda_k^f\right) + \sigma_k \left(1 - \alpha_{1,k}^{X,f}\right) \right].$$

Non zero production at zero input

Each crop can be produced using two technology: a CES technology and a no-input technology (except value added). Let's use \tilde{x} for the variable x under the CES technology and \check{x} for the no-input one. Let's assume that when produced under these two technologies, the same crop has different productivity distribution with the following cumulative distribution:

$$F(a) = \exp\left\{-\sum_{k\in\mathcal{K}}\left[\left(\frac{\tilde{a}_{k}}{\gamma\tilde{A}_{1,k}}\right)^{-\theta/(1-\rho_{k})} + \left(\frac{\check{a}_{k}}{\gamma\check{A}_{1,k}}\right)^{-\theta/(1-\rho_{k})}\right]^{1-\rho_{k}}\right\},\$$

where ρ_k parameterizes the correlation between the two technology.

New equations

$$Q_{k} = x_{1}\lambda_{k}^{(\theta-1)/\theta} \left[\tilde{A}_{1,k} \left(\frac{\tilde{r}_{k}}{P_{k}^{\chi}} \right)^{\sigma_{k}} \tilde{\lambda}_{k}^{(\theta-1+\rho_{k})/\theta} + \check{A}_{1,k}\check{\lambda}_{k}^{(\theta-1+\rho_{k})/\theta} \right], \quad (1)$$

where

$$\begin{split} 1 &= \tilde{\lambda}_{k} + \check{\lambda}_{k}, \quad (2) \\ \tilde{\lambda}_{k} &= \frac{\left(\tilde{A}_{1,k}\tilde{r}_{k}\right)^{\theta/(1-\rho_{k})}}{\left(\tilde{A}_{1,k}\tilde{r}_{k}\right)^{\theta/(1-\rho_{k})} + \left(\check{A}_{1,k}\check{r}_{k}\right)^{\theta/(1-\rho_{k})}}, \quad (3) \\ \lambda_{k} &= \frac{\left[\left(\tilde{A}_{1,k}\tilde{r}_{k}\right)^{\theta/(1-\rho_{k})} + \left(\check{A}_{1,k}\check{r}_{k}\right)^{\theta/(1-\rho_{k})}\right]^{1-\rho_{k}}}{\sum_{l \in K} \left[\left(\tilde{A}_{1,l}\tilde{r}_{l}\right)^{\theta/(1-\rho_{l})} + \left(\check{A}_{1,l}\check{r}_{l}\right)^{\theta/(1-\rho_{l})}\right]^{1-\rho_{l}}, \quad (4) \\ \check{r}_{k} &= \rho_{k} - w\check{\nu}_{k} \quad (5) \end{split}$$

Data

- Share of land revenues or Acreage share (for λ_k^f)
- Acreage or supply elasticities (θ)
- σ_k : yield elasticities or fertilizer response function.
- α_k^{χ} share of land and other inputs in production costs.
- $\alpha_{r,k}^{X,f}$ share of each input in the bundle or in a biophysical approach the input levels.
- Q_k^f/Q_k or $A_{1,k}^f$
- Others