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Abstract

This article presents the results of a literat@vdaw performs with aneta-regression analys(#RA) that
focuses on the estimates of advanced biofuel GreemghGas (GHG) emissions assessed with a Life Cycle
Assessment (LCA) approach. The mean GHG emissibmmoth second (G2) and third generation (G3)
biofuels and the effects of factors influencingstheestimates are identified and quantified by mexdns
specific statistical methods. 47 LCA studies arduded in the database, providing 593 estimatesh Ea
study estimate of the database is characterizeédtbghnical data/characteristi@,author's methodological
choices andii) typology of the study under consideration. Theadase is composed of both the vector of
these estimates — expressed in grams of &fivalent per MJ of biofuel (g G&y/MJ) — and a matrix
containing vectors of predictor variables which ¢encontinuous or dummy variables. The former & th
dependent variable while the latter correspondhéoexplanatory variables of the meta-regressiodeino
Parameters are estimated by mean of econometrit®dse

Our results clearly highlight a hierarchy betweed &d G2 biofuels: life cycle GHG emissions of G3
biofuels are statistically higher than those ofdibl which, in turn, are superior to those of BWloreover,
this article finds empirical support for many okthypotheses formulated in narrative literatureveys
concerning potential factors which may explainreates variations. Finally, théRA results are used to
adress the harmonization issue in the field of aded biofuels GHG emissions thanks to the technajue
benefits transfer using meta-regression madEte range of values hence obtained appears ltawee than
the fossil fuel reference (about 83.8 in g £ MJ). However, only Ethanol and BtL do complyhwihe
GHG emission reduction thresholds for biofuels miedi in both the American and European directives.
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1 Introduction

This article addresses the environmental evaluassnes of advanced biofuels. It focuses on a Bpeci
environmental evaluation method — Life Cycle Assemst (LCA) — and its estimates of second (G2) and
third generation (G3) biofuels greenhouse gas (Gle@jssions. The mean Global Warming impact
indicator, expressed in grams of £€yuivalent per MJ of biofuel (g GEg/MJ), and the effects of factors
influencing these estimates are characterized amahtijied using ameta-regression analysiMRA): a
guantitative research method to review and syrtbesmpirical literature. This research is of priynar
importance as this measure may be interpreted asstamate of the contribution to climate change of
advanced biofuels.

First generation (G1) biofuels have been develojegrovide a substitute for fossil fuels in order t
enhance energy independence and mitigate climaamgeh They mainly correspond to Ethanol and
biodiesel produced from conventional crops suchsagar cane, sugar beet, wheat, corn, rapeseed,
sunflower, etc. Nevertheless, G1 biofuels have commeagainst sustainability issues. Indeed, theaifse
agricultural commodities for the production of hiefs induces an additional demand for these cragds a
consequently, an increased use of arable landhé&mumbre, it has been suggested that it may induise af
food prices [1]. Additionally, many life-cycle basstudies point out that G1 biofuels do not redG¢¢G
emissions as significantly as expected [2]. As @sequence, G2 and G3 biofuels (referred to inghjger

as advanced biofuels) from biomass residues, noreatary crops and wastes have been developectin th
recent years. These biofuels seem to be moreezftithan G1 biofuels in terms of land use, foodusgg
GHG emission reductions and other environmentaesqd3].

G2 Ethanol is obtained from the biochemical coneerof lignocellulosic biomadsand synthetic diesel
from biomass, also known as BtL (Biomass to Liguids biomass FT-diesel, is produced by the
thermochemical conversion of lignocellulosic biosa&3 biofuels are produced from microalgae using
algal oil for biodiesel production from conventibrteansesterification (a.k.a Fatty Acid Methyl Bste
FAME) or hydrotreated vegetable oil (HVO) (See Apgix A for further details). Advanced biofuels are
currently either in research and development orafestration phase and still need further improvesémt
be commercially viable.

Some states have set ambitious production targetdibfuels, supported by subsidies and legislative
incentives. In the European Union (EU), the Rendgv&mergy Directive (RED, [4]) requires the use of
10% of renewable energies in the transport sectdd20 (in 2009, the share was 3.6%). To achieige th
goal, the contribution of biofuels produced frognibcellulosic materials, wastes and residues isidered

to be twice that made by other biofuels. This carviewed as an incentive to develop advanced dmflre
the United States (US), the Renewable Fuel Stan@i&2, [5]), under the US Energy Independence and
Security Act of 2007, requires the use of 136 dnlliitters of biofuels by 2022 (in 2009, 41.9 it litters
were mandated). It specifies that 79,3 billiorelist must be of "advanced biofuels" and "celluldsatuels”
(the definition of "advanced biofuels" in the RAS2lifferent from the one adopted in this paper aiitbe
clarified later on). In addition, other countriesugtralia, China, Japan, New Zealand, Brazil arters)
have already been actively developing next gerardiiofuels and feedstock although there is ljpibdicy
support in these regions [6].

Furthermore, the EU and the US set a list of soghility requirements for biofuel production. Intho
regions, the only mandatory quantitative criteri@nelated to life cycle GHG emissions calculatsthg the
LCA method. The RED sets minimum life cycle GHG ssion savings for all biofuels compared to a fossil
fuel reference. These savings are of 35% since,2&@® will be of 50% in 2017 and 60% from 2018 for

! Lignocellulosic biomass refers to annual crop dess (e.g. corn stover), forest residues, herbaceou
energy crops (e.g. switchgrass, miscanthus) andlywbimmass (e.g. poplar, eucalyptus).
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new biofuel plants. The RFS2 also sets minimum dyele GHG emission savings that biofuels have to
comply with in order to be eligible for appropriasebsidies. Those savings are set to 20% for first
generation biofuels, 50% to be considered as "ambabiofuel” (as defined in the RFS2, differentirour
definition) and 60% to be considered as "celluldsatuel”.

Those GHG emission requirements as well as biohgglrporation targets are clearly in favour of Gzla
G3 biofuels. This shows the will of policy makers support their future development compared to G1
biofuel. That is one of the reasons why we choogedus on advanced biofuels in this study.

We choose to conduct our literature analysis byerewmg only LCA studies assessing Global Warming
impact indicatorsi.e. GHG emissions, for the following two reasons. triche of the main objectives for
developing biofuels is to reduce global GHG emission order to mitigate climate change. As an
illustration, recall that the only quantitative ndiatory requirement for biofuel sustainability i¢ated to life
cycle GHG emission savings in the EU and in the Tus, it appears important to check advanced blofu
compliance with this requirement by comparing thié& cycle GHG emissions with those of a fossilfu
reference. Second, a significant literature alreexigts that assesses GHG emissions of advancaglsio
using the LCA approachience a sufficient number of studies is availablevestigate this issue. Note that
because GHG emissions have an environmental ingiaatglobal scale (GHG emission effects do not
depend on the place where they have been emitkesl)iterature review includes worldwide studies.

The first applications of LCA to biofuels to measar Global Warming impact indicator were carrieti a@u

G1 biofuels in the 90's (such as Kaltschrmeittal. [7]). Since, numerous LCA studies were conducted t
analyze G2 and G3 biofuel pathways. Despite thisstauntial literature, the extent to which advanced
biofuels may have lower GHG emissions than theilfosgerence remains a subject of debate. While the
majority of these studies shows GHG benefits foranded biofuels compared to a fossil fuel reference
some authors come to the opposite conclusion. istance, LCA GHG emission results selected for this
study (47 studies providing 593 GHG emission resdée next section for more details) range frof2 -1
(G2) to 1378 (G3) g Ceag/MJ of biofuel (see Figure 1); the greatest \mlityg of GHG emission results
being for G3 biofuels.
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Figure 1 - GHG emissions extrema for bibliographiaesults of G2 and G3 biofuel LCA studies (47 studg 593
observations)

When looking at Figure 1, one can wondeif there is a consensus about GHG emission benibm
advanced biofuels ang why there is so much variation among results e$é¢hstudies even though they are
all investigating the same phenomenon.

Actually, even if the LCA approach is consistenotighout, each study — by nature — concerns differe
pathways and uses specific data and methodolaggsalmptions. Previous narrative surveys of bidf@#
studies mention that LCA results are inconclusiggarding GHG emission performances of advanced
biofuels [8-13]. According to these literature eavs, LCA GHG emission results for advanced biofuels
vary significantly depending on various factorstswas: the assumptions made to describe the biomass
production step (model used to estimatgONemissions and inclusion of direct and indirectdlause
change), the data used to describe the biomas&on into biofuel and the general LCA methodatagi
choices (system boundaries, the method used taactar coproducts impacts, etc.). While thesedative
results from literature reviews are really usefuimary study results remain difficult to compaechuse of
differences in technical data or methodologicalichs.

As a consequence, it is quite difficult to atterapy summary and to form an accurate opinion onttpg
using classical literature reviews methods. In ipaldr, it seems hard to provide one GHG emission
estimate appropriate for advanced biofuels.

Since most studies are inconclusive, their resuliy not be relevant for decision support [14]. Ehisra
strong need for harmonization of LCA results, esgcfor policy makers or investors, as suggedigd
Heath and Mann [15] with the.CA harmonization projett The purpose of harmonization, as defined by
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Heath and Mann, is to identify and quantify keytdas that influence the environmental impacts for a
technology or product in order to be more conckisiencerning its real environmental performancds. A
present, few studies have tried to harmonize GH@&san results from various LCA studies for advahce
biofuels. For instance, Handlet al. and Liuet al.[16,17] propose to harmonize GHG emission redualts

G3 biofuels by normalizing their LCA models usingre methodological assumptions and same generic
pathways.

Although it is not possible to calculate one GHGs=ion estimate appropriate for all advanced bisfuge
believe it remains possible to determine centrablémcies based on the distribution of previous ystud
results. To do so, this article proposes an altefagaummary to previous literature reviews, udimgmeta-
analysis(MA) methodology to describe and synthesize existstgnates of the LCA GHG emissions of
advanced biofuels.

MA is a quantitative research method developed tgaoenand/or combine outcomes of differentividual
guantitative studies, named primary studies, withraror less similar characteristics that can bdrotied
for [18]. By nature, each result from a primarydstycalled an estimate) may be quoted to illustthte
uncertainty of estimate€stimates of previous studies are grouped together database, called meta-
database, according to one or more differentiatthgracteristics. These estimates become then the
observations, also nameadfect-size(e-9 (see below), of the meta-database whereas tlieratitiating
characteristics become their potential explicatiggables. In aMA framework, thee-sis assumed to be a
function of these explicative variables; functiomigh can be specified and assessed. Whenntkis-
functionis estimated by the means of multi-regressionrtiggles,i.e. specific econometrics estimators, the
MA is called ameta-regression analysi®RA)? This multivariate setup allowed by the meta-resien
framework is very usefull in the field of literatureviews as it enables us to statistically idgnaéihd
guantify —ceteris paribus- the effect of the most influent characteristics thee-s Thus, compared to
narrative literature reviews, tiMRA methodology — thanks to its multivariate setupveg the opportunity
to test the influence of specific characteristadser having controlled for the effect of other snBesides, a
"meta-regressidhframework allows to produce an estimation of theamesweighted by the systematic
influence of its main drivers. Indeed, once staiadty estimated, the meta-function can be usededuce
original values of the-sby specifying new values for the main drivers iifead corresponding to relevant
case studies. This technique lm#nefits transfer using meta-regression mqadassit is named in thmMA
literature, may be a particularly well adapted rodtilogy to deal with the so-called harmonizatiosues
specific to the LCA literature.

The literature of LCA studies estimating advanceduels GHG emissions is how large enough to supgor
statistical assessment of this measure of the 1@é&atral Warming impact indicator. The primary purpas

this MRA is to identify and quantify by statistical esti@st which factors among) technical
data/characteristic$i) author's methodological choices aiiy typology of the study under consideration
have an impact on variations of the GHG emissitimeses. The second purpose of thiRAs to generate

a distribution of the potential GHG emissions ofaaced biofuels and to characterize the mean Global
Warming impact indicator and its standard deviaggnoss G2 and G3 biofuels. We investigate — throug
an application — the potential fMRAto synthesize LCA literature by highlighting thaim determinants of
result variability in order to perform harmonizatio

This paper is organized as follows. Section 2 lisief summary of both LCA approach applied to beiéu
and MRA methodology. Section 3 is a description of theaattabase in which thees and explanatory
variables are described. Meta-regression modelstlamdssociated results are presented and analyzed
Section 4. Main conclusions and methodologicaludision are presented in Section 5.

2 S0 definedMRAmay be viewed as a subsef\ in the literature.
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2 Methods

First, this section briefly presents the LCA appgioand then summarizes how it has been used in the
literature to estimate Global warming impact intlica of advanced biofuels. Second, the meta-reigress
methodology is briefly presented. Both sectionsbéma better understanding of tees and explanatory
variables of théVA.

2.1 General presentation of LCA method

Life Cycle Assessment (LCA) is a method based @ $&ndards 14040/14044 [19,20] aimed at assessing
several potential environmental impacts of a produa service during all of its life cycle. Thip@oach
takes into account all steps of a product's lifedeyfrom the extraction of natural resources ngasgsfor its
production (oil, coal, gas, etc) to its end of libe destruction ("Cradle to Grave" analysis). TheAL
approach enables the characterization of poteatimironmental performances of a production system i
order to identify potential improvements and igkevant tool for decision makers.

The methodological framework for LCA set by intefoaal ISO standards is divided into 4 steps:

1. Goals and Scope of the study: This step deals thighdefinition of questions that we want to
answer in the study and the final users of thelt®sdence all methodological assumptions, i.e. the
scope of the study (system boundaries, functionmat, unethod to account for coproducts,
environmental impact indicators, type of data, ate)described according to the goals of the study.

2. Life cycle inventory: Input and output flows of neat and energy as well as emissions to the
environment (air, water, soil emissions and sola$tes) included in the system are listed.

3. Life cycle impact assessment: Inventory flows avaverted into potential environmental impact
categories using a characterization method. Eamlv ftan contribute to several environmental
impact categories. Impact categories and associakatacterization method are chosen in
accordance with the goals and scope of the study.

4. Interpretation of results: Results are analyzedndigg the defined goal and scope of the study.

This methodological framework is also clarifiedtive ILCD Handbook [21] that provides further guidan
to assure consistency and quality of LCA studies.

There are two main approaches adopted in LCA stutkpending on the type of questions the authon$ wa
to answer: Attributional LCA (A-LCA) and ConsequehtLCA (C-LCA). In an A-LCA, all the flows
physically linked to the product's life cycle amcluded in the system's boundaries [22]. C-LCA has
emerged as a modeling approach that captures immmaciurring beyond direct physical relationships
assessed in A-LCA [22]. It extends the system'sadaties compared to A-LCA in order to consider reairk
information in the life cycle inventory to asselss effects of a decision on the system [23].

LCA results could also vary from one study to aeothecause of different sources of uncertaintié® T
nature of these uncertainties could be stochastientainties (i.e. uncertainties linked to valuépmcess
data or characterization factors for example) ooia@h uncertainties (i.e. choice of methodological
assumptions, impact assessment method, system dnes)docalization of data, etc) or lack of knosge

of studied system [21]. Uncertainties should beresikkd in LCA studies by applying for instance Mont
Carlo method to assess stochastic uncertaintidsy aronducting a sensitivity analysis to assessocehoi
uncertainties.

2.1.1 Specificities of LCA applied to biofuel pathways

The first applications of LCA for the environment&laluation of biofuels were carried out in thes%hd
since then; many methodological issues concerirggproduct category have been emphasized. The main
specific methodological assumptions on biofuel L§Adies are:
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0 system boundariesisually, a distinction is made between "Well Tank' (WTT) boundaries that
include all steps from the production of biomassdfidock to the transport and distribution of fuel
and "Well To Wheel" (WTW) boundaries that include tWWTT steps and the fuel use (end-of-life).
Infrastructures may or may not be included wittma system boundaries.

o functional unit it is a measure of the function of the studiestam. All LCA results from the same
study should be expressed in the same functionataenable comparison. A usual functional unit
in LCA of transportation systems is a "kilometeiven by a reference vehicle on a standard driving
cycle (and assuming that generally the differerdlSunave a similar performance in terms of
acceleration, max speed, etc.)". Another classfaalctional unit for assessing fuels is "the
consumption of one MJ of fuel in a motor" expresselJ.

o reference systenresults of the studied system have to be compaidd results of a reference
system (usually a fossil fuel). This reference aysthas to be defined in accordance with study
purposes and methodological choices; in particitlamust have similar boundaries, the same
functional unit and similar geographical and tengboopntext.

o the method to account for coproduginother classical methodological issue in LCA cems the
fact that more than one product can be producedhén studied system (called coproducts).
Distributing environmental burdens among producid eoproducts of a process is a controversial
issue in LCA. Two types of methodology are gengralpplied for the multiproduct cases: the
substitution method and allocation method. Thi$ tasthod consists in sharing proportionally the
environmental impacts between products and coptedugsed on physical (e.g. mass, energy) or
economical characteristics of the products. With shbstitution method, allocation is avoided and
the burdens associated to alternative ways of minduhe coproduct are subtracted from the final
result. The LCA ISO standards recommend the sysbgmansion method (also called substitution
method) [24,25] but the choice of the method tooaot for coproducts strongly depends on the
purpose of the study and on the nature of the estuslystem.

Biofuels use biomass as raw materials. Hence, L@plied to biofuel pathways has to deal with some
classical issues linked with the biomass production

o Land Use Change (LUC)t refers to all changes induced by land conwersr land management
changes. Direct LUC is mainly treated as the alaw below ground carbon release from the
conversion of forests or grasslands into agricaltland. Indirect LUC refers to all changes that
occur when the increased demand for agriculturadiyets induces land conversion in other parts
of the world. It is important to note that thesempes not only affect GHG emissions but other
environmental aspects such as biodiversity, sdiilifg, etc. Indirect LUC is the main subject of
debate nowadays concerning biofuel environmentalesssnent, especially regarding GHG
emissions [26] but there is no consensus on theheayto account for it in LCA methodology.

o Nitrogen cycle Nitrous oxide (NO) field emissions are known to be the subjectaritioversy in
the biofuel LCA world since Crutzept al. [27] published "NO release from agro-biofuel
production negates global warming reduction by aeplg fossil fuels". There is a huge
uncertainty about these emissions because theyndep® local factors and this gas has a high
GWP (around 300 times as much as,C@h a G1 biofuel LCA study conducted for the Fren
government, the uncertainty on these emissionstismated to be 50% [28]. To estimate these
emissions, some studies use the IPCC Tier 1 mekbgyl$29] based on the amount of nitrogen
fertilizer applied in the culture. However,,® emissions depend on other factors such as soll
characteristics and climate. Other assessment aetimeluding these factors should provide a
more accurate estimation.

o Carbon cycleConsidering the short-term carbon cycle, manyugbL CA studies suppose that the
amount of carbon captured by the biomass duringpti@osynthesis is equal to the amount of
carbon released in the atmosphere during the Biorebustion. So those studies do not take into
account either the carbon stored by the biomadkeocarbon releases during biofuel use, this is
called the carbon-neutrality hypothesis.



2.2 General presentation ofmeta-analysis method

"Meta-analysis refers to the statistical analysisadarge collection of results from

individual studies for the purpose of integratingetfindings. It connotes a
rigorous alternative to the casual, narrative dissions of research studies which
typify our attempts to make sense of the rapidlyaeding research literature"

[30].

The Glass' pioneering articles [30-32] in educatioasearch are usually cited in the literaturbeiag the
first ones to propose and develop this method. @werpast three decad@dA has first been extensively
applied to clinical studies in psychological andieagtional research and then to health sciences.nibw
increasingly employed in other research fieldsc&ithe early 1990s, this method has been gradonahe
and more accepted in social sciences, such as timeylead economics

To our best knowledge, two articles can be idesdifias the precursors of the application of this
methodology to synthesize LCA estimates for bicfy8B,34]. Farrelket al. [33] aim at estimating reliable
values for the net energy and life-cycle GHG emissiof corn Ethanol in the US. They carry out a
harmonization exercise on 6 studies, adjusting tmeithods and data to what the authors argue teebe
practices. Bureaat al.[34], on the other hand, focuses only on the gnbedance since they consider there
is too much controversy involving life-cycle GHGliggations (due to uncertainties in the quantificatof
N2>O emissions from agricultural production and indirand use change). Rather than trying to detegmin
best estimates, they aim at identifying the matemheinants of the net energy value for G1 biofuels.

MA is nothing else than a particular methodology itdrature reviewing. This method has not been
proposed to synthesize any kind of research lileeatbut only studies with quantitative resultdeta-
analysis is the analysis of empirical analysd85], not theoretical ones. Applied to environménta
evaluation methods, this methodology is thus relet@review previously reported LCA studies outesm

Research synthesis aims at summarizing findingsigh a way that clear and uncontroversial conahgsio
may be drawn from previous accumulated knowledget, ¥stimates obtained by LCA approach are
characterized by large differences among studyiteedtven if different studies deal with a sameigsseach
one departs from previous literature by using d#ife data sets, different methodological choicés, e
Research synthesis may thus appear as an espedifiibult task when reviewing LCA literature.
Compared to qualitative literature reviews, thagioidl idea behindMA is to consider study results in the
same way as any scientific phenomenon. Each repoewilt is viewed as an "observation” of a complex
dataset, flo more comprehensible without statistical analykisn would hundreds of data points in one
[LCA] study' [32]. MA may then be understood as a set of statisticahigaes, such as econometrics,
which allows to systematically summarize quantiatstudies. It is a complementary method to naeati
literature surveys that generally provide a moralitative than quantitative analysis of estimatsutts.
Using econometrics methoddRA allows to review and analyze previous resultsugloaceteris paribus
reasoning [36]. By doing so, outcomes from manglistican be integrated and combined in such a katy t
comparison between their results become easier.

MA provides a quantitative summary of estimates tessilich as mean estimates and confidence inteals
the quantitative results among studies. Comparethtaative literature surveys, the major contribatof
MA consists in modelling estimate result variatioesaafunction of different factors. The use of speci
econometrics method allows then to statisticaltimeste and quantify their influence on study outesm

More formally, let the generic form of the lineagression model be the "original model" of M&A
equation:

% Six meta-analyses were published at the sameitirttee field of economics [35,106—110]. See fotanse Stanley [40] for a
more comprehensive presentation. Standard refesdacéechnical aspects of meta-analysis are [38139112].
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Y =f(X)+e¢
= Xﬂ+ & (1)
whereY is the ( x1) dependent variable vector composed ofltheported estimates of the phenomenon of
interest in theMA. For reasons that will be developed in Section33.the reported estimates oM are
named &-s' estimates. Theseestimates are drawn frodnstudies. Note it is generally statéa J . If only

one estimate per study is retained, thenl. As usual, the terng is a (x1) vector of a random disturbance.
It is assumed that the sampling error is normallgtrbuted with mean zero and variance

o’ g ON (O,ij ) Oi=1,..).Xis the (xK) matrix composed of thkk—1 independent variables of this

meta-model. The independent variables represeuly stharacteristics which are supposed to have an
influence on the systematic excess variation ofgYis the K x1) vector of the coefficients of this meta-

model. Once estimated, it gives a measure of thepkar effects of each characteristic.

The following notational convention will apply ité remaining of this paper: let the first columntioé
(IxK) data matrix,(lxK), be a column of 1s and the others column vecterthel observations of the K-1

independent variables:

X = D S S, 2
(1K) (('vl) (1) () z%)lj @
1 X1

whereC =|1| and X, =| X
. (1.9 N

1 X,

Let us specify thel¥1) vector of the coefficients 5 , as follow:
(19
a
B
y | B
Bis

According to this notational conventiory; is thei-th observation of thd-th independent variable
(i=1...,1 and = 1..K -JL. 4 is the coefficient of the vector of thebservations of theth independent
variable, X, , anda is the constant term in the model, also knowrhasrttercept.

It may be convenient to refer to a single obseovalin eq. (1). Then, eq. (1) may be rewritten dis\es:
Yi= atBXtBx t v Xttt f % g te, 0=

a+§,8,>q‘i+5,,Di:1,..,l 3)

= X B+e,0i=1,.)

(LK) (K1)

where:



X = O land X, =(LX; X Xy ) O0i= 100
! 1,K

In MRA dealing with LCA studiesX could be stated as being composed of three kifidsagables.
X = ((C T, M, S) whereT, MandSare assumed to [gxt), (Ixm) and(Ixs) vectors, respectively

(LK) ) an em) as)

is composed of variables related to technical characteristiceathways assessed in the primary studies. In
this MRA, it corresponds to biofuel characteristics suchthes type of biomass feedstock, the type of
technologies and associated yields, etc. Thesariables ofM refers to methodological assumptions
reflecting researcher choices: for instanbhe type of LCA approach (A-LCA or C-LCA), the syst
boundaries, etd-inally, thes variables ofS correspond to the typology of the study under atersition
such as the type of this study (peer review or wgrkpaper for instance), the publication year @& th
geographical location of authors. Of course, thBndive specification of eq. (1) depends on bokie t
particular issue investigated (here, Global Warmimgact indicator of advanced biofuels) and studies
reviewed in theVIRA

2.2.1 Treatment of heteroskedasticity inmeta-regression analysis

Heteroskedasticity is a well-known problemNtRA literature. Recall that the basic linear regrassimdel
assumesE(ag'):ngl. This assumption implies that the variance-covexéa matrix of the vector of
2 - . . .
parameters estimates,% , Is equal to QS(X'X) . More particularly, it is thus assumed:
(k1)
Uji =¢’, 0i=1,..| . When applied to thé/RA framework, the homoskedasticity assumption of the
disturbances may not be held.

By nature, primary studies results are not estichatigh the same precision. In econometric termsjaains
that each estimate has a different standard e¢hatjs: o, # o, ;, 0i# j. As a consequence, the variance

of £ in eq. (1) varies across its observations arglestimates,y,, may not be considered as having

homogeneous variances. Indeesls" estimates are drawn from different primary stsdiehese studies use
differenti) technical data/characteristiag, author's methodological choices anyg do not have the same
typology. These reasons, among others, may explay eache-s estimates are estimated with varying
degrees of precision.

In presence of heteroskedasticity, the Ordinaryst &quare (OLS) estimate@ , remain unbiased and
(K.1)

consistent. Nevertheless, heteroskedasticity oftads to wider parameter estimate confidence iaterv
which may cause insignificant relationships betweglependent and dependent variables if not acedunt
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for*. Therefore, heteroskedasticity is potentially dases problem and has to be explicitly treatedViRA
Various solutions have been used in MBA literature to correct for heteroskedastititfwo majors
approaches have been employed in the literature.

2.2.2 Methods of estimation using Heteroskedastic Consestit Covariance Matrix

One of the most common approaches is to use hkesgfastic consistent estimators such as White's or
Huber-White's Heteroskedastic Consistent Covaridaix (HCCM). The Newey-West estimator has also
been used in somdA. The latest has been designed for stationary sienies data and, as a consequence,
Nelson & Kennedy [37] do not recommend to emplag #stimator in MRAframework. The use of White
and/or Huber-White standard errors theoreticallyexds for heteroskedasticity.

Nevertheless, non homogeneous variances may rempmactice, more particularly wheviRA are applied

to small sample sizes. The white and Huber-Whitenasors are generally used because the source of
heteroskedasticity is not exactly known. It is tlo¢ case in the context MRA in which the source of
heteroskedasticity is clearly identified. Indeedhas already been explained tHMRA are subject to
heteroskedasticity because e-s estimates are ebtaiith varying degrees of precision. That is tg, saeir
respective standard errors are not the same. Inoetic sciences, e-s estimates correspond to partial
regression coefficients drawn from primary studidien estimating these coefficients, primary stsi@diso
estimate their standard errors. These estimategdgrca measure of thBIRA heteroskedasticity. This
information may be used to adequately correct &ietoskedasticity. The Weighted Least-Squares (WLS)
method of estimation takes such information exghiéhto account in its estimation procedure.

2.2.3 The weighted least-squares method of estimation
A second alternative consists in estimating theupaters by using the WLS regression. Indeedy, s

variances are known, the most straightforward neetifdhe correction of heteroskedasticity is by nweaf
WLS®.

* A wider confidence interval of a coefficient, s;a@', means that its variancé[f; , is greater than expected. Thus, it conducts to
a decrease of thevalueof ,5: t/3 = %—2 , Which increases the probability of falsely acoepthe null hypothesis of tests
' o
B

of significance.
® See for instance Nelson & Kennedy [37] for a revaf heteroskedasticity treatments used in metdyaisastudies dealing with
environmental economics issues.

®As explained in Gujarati [113], once the originaldel has been transformed, the variance of "nestuddance terms‘si* , is:

G

1 , ,
= —E(g) sinced?, is known
. ,

£,

Var(si*) = E(a*z)

L) et

£l

=1
which is a constant. That is, the variance of thadformed error ternﬁ‘i* , is now homoskedastic.
11



Let o,; be the estimated standard efraf the i-th e-s estimate, y, for any i. Knowing they's
heteroskedastic variances;, , the WLS method of estimation takes this informrtinto account explicitly
by, first, dividing eq. (3) by the standard errofsy,, o, , giving:

Y, 1 & .
——=agld—+ +—, 0Oi=1,..] 4
ng J£| Zﬁ Ug; Jsl ( )

Second, the Ordinary Least-Squares (OLS) methastirhation is applied to the transformed variakiles,
to eq. (4).
The moreg,; is important, the less is the precision pf Thus, by dividing eacly, by its standard error

estimate,o, ., the WLS allocates to eaéhsestimate a weight which is inversely proportiotwaits degree

£,

of precision. Intuitively, less precigesestimatesy, with wider o, obtain relatively smaller weight than

more precise ones in minimizing the (weighted) siimesidual squares. Indeed, recall that the OL8hatk
consists of minimizing the sum of residual squareS'

Manq Mln( |1))

Where(lel) is the column vector of residuals defined as feo

Y = X + e
(1) (IK)(DK% (1)
(9 (.K)(%)

whereDﬂ is the column vector of parameters estimated byOhS method.
(K1)

Thus, applying the OLS method to eq. (4), WLS pai&ns estimates are obtained by minimizing:

2

. ag,i

L
- Mmiz:l“o_—;m; (5)
- Mini:vvief 6)

According to eq. (5) and (6), the WLS estimators abtained by minimizing a weighted sum of residual
squares with they,'s unconditional variances acting as the wefbhts
1
W=——- 7
' Var(y) @
Weights defined in eq. (23) are known as being éhbsit minimize the variance of the WLS estimators.

These weights will then provide estimators thatBlr&JE (Best Linear Unbiased Estimators). In a gatr
framework ofMA (the Fixed Effects Size model), these particulaights are obtained from the estimated

standard error of ea@hsestimates.y,, drawn directly from primary studies [38,39].

" Again, likee-sestimates, estimated standard errors are drawmgramary studies.
8 The comparison of eq. (4) and eq. (6) may expéaime confusion encountered in the literature. Aghlighted by Nelson &
Kennedy, some studies refer to weights based aanas and others refer to weights based on stdmatesrs. As shown in eq.

(4), standard errors weighte], ; , are used to transform the variables, but as aezprence (see eq. (5)), it is variances weights,

Ufyi , which are required to minimize the weighted sdnesidual squares.
12



3 Database of LCA results of GHG emissions for advama biofuels

3.1 Construction and composition of the database

As mentioned before, the goal of this study isxXpl&n the variations of LCA results for GHG emsss of
advanced biofuels. Consequently, the variable tef@st (so-calleéffect-sizge-9 or dependent variable) is
the result for GHG emissions per MJ of biofuel aéted with a LCA approach. These estimates haea be
drawn from the study sample of ti¥A. One value for GHG emissions (i.e. the estimatejesponds to
one observation in oUMA sample. As one study can contain several estimatesdatabase (i.e. olMA
sample) can be composed of more than one obsernyaiostudy ( = J , recall eq.(1)).

The inclusion of all estimates from a single stugly source of disagreement in thié literature. Some
authors believe that only one estimate should tleidied per study based either on the mean of thkaale
estimates, or selected on the basis of expert jedgmvhile other authors advocate including alinestes

as a method of boosting sample size (see Stan3yfd4 a discussion on this issue). We choose ttude

all estimates from a single study for the followitwgp reasons. First, the choice of a particulamrese is
subjective, and when facing the same estimateferdift researchers may undoubtedly make different
choices. To maintain a position as neutral as ptessive considered all available explicit resutisthe
study or which are easily inferred. Second, thee aoirMA is to summarize quantitative literature in a
systematic way regardless of its quality. Henceatild not be relevant to select studies ex-amgarcing
their quality since this choice would be arbitrarinie MRA literature proposes various ex-ante tests (such as
statistical ones) that can lead to exclude som#ieLex-post, or at least some of their estimdtes) the
databas&A sample.

3.1.1 Selection and description of studies

Before proceeding to l6lA analysis, the database of tHé has to be constituted. To do so, some common
procedures exist iMA. Stanley [40] describes three steps to condudida First, primary studies having
estimated a common quantitative effect are idattikmong published and unpublished literature. $éis

of studies is the material of thdA. Second, each article results and features aredcoda database. By
doing so, studies are characterized in a way thaive them to be compared. Their finding®. their
estimates, become the observed values of the deperahd independent meta-variables. Eag and
potential factors which are supposed to have aftiyence on its variations are identified and summpeal in

a coded form: the explanatory variables of the maér Third, the MRA can be conducted to estimate the
magnitude of the quantitative effect under consitien and better understand variations in the ttegor
estimates.

This section details the selection process of stugficluded in thisA. To obtain and analyze estimates for
the GHG emissions of advanced biofuels, a largédgitaphical research has been carried out to cblle
studies using an LCA approach. We have taken auseofsboth published articles and "grey literature”
such as unpublished papers, conference papersiabfieports. The existence of published articlésctv
present detailed literature reviews dealing withsel issues than ours has already been mentioneiB][8
These literature reviews were the starting pointhef bibliographic research. Entries of their lmghaphic
references have been systematically reviewed. Tteegpmplete this first paper selection, a web-tase
keyword search - e.g. "LCA", "biofuel”, "second gestion biofuel”, "third generation biofuel", "adwzed
biofuel”, "cellulosic ethanol", "lignocellulosic lenol", "synthetic diesel”, "syndiesel", "BTL",
"microalgae”, "microalgae biodiesel", etc. - hagmeone on relevant literature databases (ScieireetD
Web of Science, SciVerse, Springer Link, etc ), wetes of major publishers of academic journals
(Blackwell, Elsevier, Kluwer, Sage, Springer, Taykrancis, and Wiley). The "grey literature" hasihe
more particularly collected through Google and Qedgcholar, Dissertation Abstracts, web sites of ke

academic institutions and authors and web sitesapbr environmental evaluation conferences.
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To better insure the homogeneity of the samplalistuhave to meet three selection criteria to blided

in the sample of thiMA: i) only studies with primary results were incldd® avoid double counting (no
literature reviews) ii) only studies using an LCA approach were ideld®, iii) only LCA studies on the
following liquid transportation fuels were includdajnocellulosic ethanol, FT diesel, microalgae ®\4nd
FAME™, iv) only studies assessing Global warming impadicator (i.e. GHG emissions) with "Well To
Tank" (WTT) or "Well To Wheel" (WTW) boundari&s The proxy used to measure the GHG emissions has
to be the expressed (or easily convertible) in tefigrams of CQequivalent per MJ of biofuel.

Moreover, no a priori filter was used concerning tipe of publication (published or unpublished grap
but the date and the English language. TWisfocuses on studies conducted since 2002 (until 20itl)
since, to our knowledge, no advanced biofuels L&Alies were conducted before this date.

At the end of this selection process, the dataltasgains 47 LCA studies [4,5,41-84] providing 593
estimates of life-cycle GHG emissions of advancexfulels. Details of number of estimates by studies
included in the sample are provided in Table 2 (Bable B.1 in Appendix B for details about selected
studies).

3.1.2 Choice and description of the meta-variables

The object of thisMA is twofold.

First, thisMA proposes a statistical summary of the role okdéht determinants for estimates of ¢éhg i.e.

the Global warming impact indicator for advancedfiels in grams of Céq per MJ. By identifying and
measuring the influence of these determinants, mag obtain a more in-depth explanation of how
advanced biofuel LCA GHG emission estimates chasgthese factors vary. Second, an important aspect
of this article is to provide average estimatethefGlobal warming impact indicator for advanceafiels.

The dependenkfg and independent variables (potential factorshisfMA are now detailed.

3.1.3 The Effect-Size: the dependent variable

As mentioned before, the variable of interest, ated effect-sizee-9 or dependent variable, is the result
for GHG emissions per MJ of biofuel calculated wigh LCA approach. Those estimates drawn from
studies,i.e. the observations of olMA sample, are expressed in different units of measlinese values
need to be converted in a way that allows themet@dmbined to constitute the meta-dependent variabl
The transformation of the dependent variable olagems into a unique metric measure is a common
procedure oMA studies. This step is called thes calculation and is central tdA literature. Indeed, it is
this conversion of the dependent variable in adstech measure, the-s that allows to compare previous
results and to investigate their determinants.unsample, most of the studies present the GHGsaonis,

in grams of CQequivalent, as a midpoint impact category usingGR&haracterization factors. Some other
studies present only inventory data on GHG emissemthese results had to be converted into grdms o
CO, equivalent. We used the latest IPCC characteoizdtctors [85] for these conversion steps. It wais
possible to harmonize all of the observations bggithe IPCC's 2007 characterization factors bexdius
decomposition in individual GHG emissions were alotays presented. However it has been shown tkat th
calculation method for global warming impact hagresignificant influence in LCA results [86,87].

° The MA literature distinguishes primary studies from secondary ompared to the latter, the former presents origina
research results. Litterature reviews are the gfpgample of secondary studies. In order to adoigble counting, only results
drawn from primary studies are included in a mettaldase.

19 Only studies following the 1ISO 14044 guidelinestmduct an LCA were included [20]

1 Studies on other biomass derived fuels such akanet, DME, ETBE, biogas, heat, power, CHP wereimdtided.

1270 be more precise, only the WTW studies with comstion of pure biofuel (E10, B10, etc) have bewiuded. No study with

a bi-functional unit was included.
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However, there is still another step in the caltofaof the e-s since the LCA results are not abkvay
presented for the same functional unit. Typicalctional units in biofuel LCA studies are a unit fagl
produced (liter, kg, MJ, etc.) or the service rardeby the biofuel (dislocation of a vehicle focertain
distance expressed in km, miles, etc.). Some attuelies present their results using other lessarttional
functional units such as the surface of arable laseb. All of these choices depend on the initealg of
the study.

We choose to convert the GHG emission values irdatabase into a common functional unit, a MJ ef fu
produced since this is the unit used in the REPR RIFS also presents results for biofuel energyetanin
Btu). For a given study, we apply conversion fagtoesing the provided information in the study foweér
heating values (LHV), densities, engine fuel congtiom, etc. Whenever these values did not appear in
study, information from a well-documented study waed [88]. Some studies had to be discarded becaus
results were presented for a functional unit tloatid not be converted into a MJ (e.g. Melaetal. [89]. is

a C-LCA study where the results are presented forudi-functional unit, involving fuel and electrig
production).

Lastly, a standard error is associated to evergmbsion in order to be able the treatment of amle for
heteroskedasticity. As mentioned before, there magnly two ways to treat uncertainty in LCA (and
consequently estimate standard errors): Monte-Camklysis and sensitivity analysis. The standardrer
could be directly inserted in the database onlyti@ observations from studies performing Montel&ar
analysis. We calculated a standard error from tkevariance of each sensitivity analysis perforrmuk
study can present the sensitivity of LCA resultsvariations of more than one parameter, each padd
separately). For the studies that did not assessileertainty of their results, we calculated ttendard
error based on all the available observations fgame type of fuel.

3.1.4 The potential factors: the independent variables

There are no guidelines concerning exactly whiatetées, potentially influencing LCA results, hawebe
included in aVIA independent variable set. Like any other sciantifvestigation, this choice is determined
by the available data [37], LCA practitioner knodde (see section 2.1) and the specificities of each
technology (see Appendix A). Some non-intuitiveiafales are also included in the database. In abditi
some study characteristics (country, year of pahbibo, etc.) were included to account for potential
publication biases.

Primary studies highlight different determinants amfvanced biofuel GHG emission estimates whereas
surveys offer a more in-depth discussion on thkely influences. According to the introduction thiis
section, three categories of potential determinafit&SHG emission estimates are kept: technical ,data
methodological choices of authors and typologyhaf $tudy under consideration. The latter variabhes
more particularly based on typical variables emetbn previousMA.

The three categories of explanatory variables askem down further as follows. Each category cdugd
divided into subcategories (see Table 1). Thoseaehories could gather from 2 to 18 variables. All
variables are encoded either as binary — a.k.anduor qualitative — variables or as quantitativeiatales.

At present, more than 80 variables are availabteerdatabase.
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Table 1 - List of categories and subcategories okiables included in the database

Technical data Methodological choices Typology of the study

Type of biofuel Type of LCA approach Type of study

Type of biomass feedstock System boundaries Year of publication

Type of coproducts Method for taking into account coproducts Geographical location of authors
Type of technologies and associated yields |Carbon neutral

Geographical location of the case study Characterization method for impact assessment

Method for assessing N20O emission from N input
Method for taking into account Land Use Change
Method for taking into account uncertainties
Number and type of environmental impact indicator
assessed in the study

A brief description of all subcategories for alltegories follows (See Table B.2 in Appendix B for a
comprehensive variable description and their réspgename):

Technical data The type of biofuel (Biomass To Liquid, EthanBatty Acid Methyl Ester or Hydrotreated
Vegetable Oil) as well as the biofuel generatiof {@fuel for BtL and Ethanol; G3 biofuel for FAM&hd
HVO) are set as variables.

In the "type of biomass feedstock" category, duthtovariety of feedstock used for biofuel prodoigtin
our sample, we created groups for biomass havimgasi characteristics (e.g. poplar and eucalyptes a
coded as farmed wood, corn stover and wheat strawaded as agricultural residues, etc.). An aoiuk
variable was created in order to test the diffeeeotusing cultivated resources (energy crops anthed
wood) and waste / residues as feedstock (biomassdgricultural or forestry residues) on LCA result

In the "type of technologies and associated yieltgegory, all different types of processes fomiass
pretreatment and for conversion into fuel that wend in the literature were set as variables fdr &id
Ethanol technologies. The "Mass yield provided'iatale indicates if a value for a mass yield of biafuel
process unit is available in the study (this caisd®n as a quality indicator for a given study) éned'Value
of mass yield" indicates this value only for G2fhels. For G3 biofuels, we choose the daily prodhitgt
and the oil content of microalgae as quantitatiaeiables since they have been often identifiedhm t
literature as the most influencing factors for kifecle GHG emissions of G3 biofuels. In additidre fact to
grow microalgae in open ponds or photobioreacts®t as a variable.

Methodological choicesAll classical methodological choices for LCA @&t as variables. We differentiate
LCA studies with an attributional approach from LGAidies with a consequential approach (see section
2.1)

Some hypothesis relative to system boundariesetrassvariables: we distinguish WTT from WTW stigdie
and the inclusion, or not, of infrastructures witkie system boundaries is also taken into account.

As highlighted in Section 2.1, the methods use@dcount for coproducts can have a great influence i
biofuel LCAs. Therefore they were also set as ietelent variables. We classify the observationsthsre
using an allocation method (based on energeticsmoastent, market value, etc.) or system expansion
method. Some studies mix both methods, which wehghlid method.

The carbon-neutrality hypothesis is very commofsinand G2 biofuel studies. However, this hypothissis
not straightforward for studies involving microadgsince they do not always capture Qidectly from the
atmosphere. C§ from flue gas for example, is generally fed inte system. Therefore, the carbon-
neutrality hypothesis is set as an independenabirifor G3 biofuels.

To study the influence of the choice of a charaation method for impact assessment, we make a
distinction between studies that take into accd&irdHGs (CQ, CH,, N,O) and studies that take into
account more than 3 GHGs.

As also mentioned in Section 2.1, emissions from the field play an important rofethe GHG
emissions of biofuel lifecycles. The use of IPC@iethod [29] or other more complex methods for
estimating these emissions are set as independeables.

Studies that take into account direct or indirechath Land Use Change for GHG emission calculasian
also identified. The method for taking into accountertainties is identified in each study: undatia
analysis could be conducted by a Monte Carlo arsalys by a sensitivity analysis on specific factors
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(ceteris paribuysor no uncertainty analysis (recall section 2/ also try to identify if the fact that a study
assess other environmental impacts than GHG emsssiould influence the GHG emission results. So the
number and type of environmental impact indicatmsessed in the study is controlled.

Study typology. Other aspects than technical data or methodabglwices are included in the database.
The type of study is identified: it could be peewiew literature or official report or legislativext
(Directive or Standard) or working paper. The yafgpublication as well as the geographical locatbthe
authors is also included in the database.

3.2 Description of the database

This MA covers a large portion of studies that explicitsed LCA to evaluate environmental impacts of
advanced biofuels. Finally, 47 LCA studies havenbselected representing 593 observations of GHG
emission results representing an average of 13digens per study (see Table 2).

Table B.1 displays a list of the studies selectedthe MA as well as a description of some of their
characteristics.
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Table 2 - List of selected studies for th#1A with a description of some of their characteristis (* MC=Monte Carlo analysis,
SA=sensitivity analysis; ** PR= Peer review, OR=fi€l&l Report, Dir.= legislative text (Directive @tandard), WP= Working

Paper)
Study #of Year E-S Type of biofuel Type of LCA  Uncertainty LUC? Type of Study Geographical
Obs. (mean in generation approach analysis? (PR, OR, Dir., location of
gCO,ey/MJ) (method)* WP)** authors
Bai et al. (2010) 2 2010 27.36 G2 (Ethanol) A-LCA No No PR Europe
Batan et al. (2010) 14 2010 -55.43 G3 A-LCA Yes (SA) No PR North America
Campbell et al. (2010) 6 2010 -9.42 G3 A-LCA No No PR Other
Cherubini et al. (2011) 6 2011 41.07 G2 (Ethanol) A-LCA No No PR Europe
Choudhury et al. (2002) 3 2002 25.03 G2 (Ethanol & BtL) A-LCA Yes (MC) No WP Europe
Delucchi (2006) 4 2006 39.64 G2 (Ethanol) A-LCA No Yes WP North America
Dussault et al. (2010) 7 2010 -19.29 G2 (Ethanol) A-LCA No Yes PR North America
Elsayed et al. (2003) 1 2003 13.00 G2 (Ethanol) A-LCA No No WP Europe
Fazio & Monti (2011) 15 2011 16.80 G2 (Ethanol & BtL) A-LCA No No PR Europe
Gonzales-Garcia et al. (2009a) 8 2009 114.96 G2 (Ethanol) A-LCA Yes (SA) No PR Europe
Gonzales-Garcia et al. (2009b) 1 2009 35.39 G2 (Ethanol) A-LCA No No PR Europe
Gonzalez-Garcia et al. (2009c) 1 2009 -9.99 G2 (Ethanol) A-LCA No No PR Europe
Groode et al. (2007) 4 2007 9.75 G2 (Ethanol) A-LCA Yes (MC) No WP North America
Haase et al. (2009) 2 2009 15.53 G2 (BtL) A-LCA No No WP Europe
Hoefnagels et al. (2010) 90 2010 12.94 G2 (Ethanol & BtL) A-LCA No Yes PR Europe
Hsu et al. (2010) 8 2010 41.89 G2 (Ethanol & BtL) A-LCA Yes (MC) No PR North America
JEC (2007) 6 2007 1152 G2 (Ethanol & BtL) A-LCA Yes (MC) No OR Europe
JEC (2011) 6 2011 11.77 G2 (Ethanol & BtL) A-LCA Yes (MC) No OR Europe
Jungbluth et al. (2007) 9 2007 61.29 G2 (BtL) A-LCA Yes (SA) No OR Europe
Jungbluth et al. (2008) 22 2008 47.90 G2 (BtL) A-LCA No No OR Europe
Kaufman et al. (2010) 25 2010 24.53 G2 (Ethanol) A&C-LCA Yes (SA) No PR North America
Koponen et al. (2009) 108 2009 43.85 G2 (Ethanol) A-LCA Yes (SA) Yes WP Europe
Lardon et al. (2009) 4 2009 94.00 G3 A-LCA No No PR Europe
Luo et al. (2009) 9 2009 163.84 G2 (Ethanol) A-LCA No No PR Europe
McKechnie et al. (2011) 6 2011 -55.88 G2 (Ethanol) A-LCA No No PR North America
Mehlin et al. (2003) 2 2003 8.28 G2 (BtL) A-LCA Yes (SA) No WP Europe
Mu et al. (2010) 19 2010 -5.33 G2 (Ethanol & BtL) A-LCA Yes (SA) No PR North America
Mullins et al. (2010) 10 2010 41.10 G2 (Ethanol) A-LCA Yes (MC) Yes PR North America
RED (2009) 10 2009 12.80 G2 (Ethanol & BtL) A-LCA No No OR/Dir. Europe
RFS2 (2010) 12 2010 20.67 G2&G3 C-LCA Yes (MC) Yes Dir. North America
Sander et al. (2010) 1 2010 -18.40 G3 A-LCA No No PR North America
Schmitt et al. (2011) 3 2011 49.62 G2 (Ethanol) A-LCA No No PR North America
Sheehan et al. (2004) 1 2004 -81.28 G2 (Ethanol) A-LCA No Yes PR North America
Spatari et al. (2005) 2 2005 18.94 G2 (Ethanol) A-LCA No Yes PR North America
Spatari et al. (2009) 34 2009 -2.69 G2 (Ethanol) A-LCA Yes (MC & SA) Yes PR North America
Spatari et al. (2010) 6 2010 -7.93 G2 (Ethanol) A-LCA Yes (MC) Yes PR North America
Stephenson et al. (2010a) 17 2010 12.12 G2 (Ethanol) A-LCA Yes (SA) No PR Europe
Stephenson et al. (2010b) 31 2010 201.15 G3 A-LCA Yes (SA) No PR Europe
Stichnothe et al. (2009) 18 2009 33.98 G2 (BtL) A-LCA Yes (SA) No PR Europe
Stratton et al. (2010) 23 2010 24.60 G2&G3 A-LCA Yes (SA) Yes WP North America
van Vliet et al. (2009) 5 2009 -15.78 G2 (BtL) A-LCA No No PR Europe
Vera-Morales et al. (2009) 4 2009 55.75 G3 A-LCA No No WP Europe
Wang et al. (2010) 3 2010 13.79 G2 (Ethanol) A-LCA No Yes PR North America
Wang et al. (2011) 3 2011 8.00 G2 (Ethanol) A-LCA No No PR North America
Whittaker et al. (2011) 15 2011 57.50 G2 (Ethanol) A-LCA No Yes PR Europe
Wu et al. (2005) 5 2005 14.72 G2 (Ethanol & BtL) A-LCA No No OR North America
Xie et al. (2011) 2 2011 -59.24 G2 (BtL) A-LCA Yes (MC) No PR North America
Number of studies 47
Number of observations 593
Mean and repartition 2009 34.45 G2 (87%) of which | A-LCA (97%),| MC (10%), SA |LUC (51%),| PR (65%), OR | North America
(weighted by observations) BtL (26%) and C-LCA (3%) (38%), no no LUC (12%), Dir. (45%), Europe
ethanol (61%), G3 uncertainty (49%) (4%), WP (53%), Other
(13%) analysis (52%) (19%) (2%)
Mean and repartition 13 2009 23.07 G2 (87%) of which | A-LCA (98%),| MC (21%), SA |LUC (28%),| PR (65%), OR | North America
(weighted by studies) BtL (38%) and C-LCA (4%) (26%), no no LUC (12%), Dir. (45%), Europe
ethanol (70%), G3 uncertainty (72%) (4%), WP (53%), Other
(17%) analysis (53%) (19%) (2%)

Median

(weighted by studies) 6 2010 15.53

As displayed in Table 2, the database contains 87%tudies assessing G2 biofuels (38% of studies
assessing BtL and 70% Ethanol) and 17% of studisssaing G3 biofuels. Thus, among 593 observations
included in the database, observations for G3 bleftepresent 13%. Other observations correspo@2to
biofuels of which 30% are BtL and 70% are EtharMbst of studies are based on attributional LCA
approach; only 3% of observations are calculated aiconsequential LCA approach. Half of the stsidie

not perform an uncertainty analysis on their rasimong studies that include an uncertainty amg|ygl%

are performing a Monte Carlo analysis. Only 28%taflies included in the database take into acdouft

(and only 4% are addressing Indirect LUC issue)rasenting 51% of the observations. Observations
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extracted from peer review literature represent Gif%@bservations (65% of studies), from the officia
reports 9% (12% of studies), from regulatory te8@s (4% of studies), and from working paper 25% (19%
of studies).

Furthermore, the number of studies assessing GHE&sEms of advanced biofuels started to strongbyngr
since 2007 (see Figure 2). This phenomenon coulthked with the publication of legislative texts the
EU and the US regarding mandatory GHG emissionngavihreshold for biofuels (respectively RED in
2009 and RFS2 in 2010).
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Figure 2 - Cumulative number of studies and obsertans per year of publication

3.2.1 Observations per type of biofuels

As depicted in Figure 3 (see also Table 3), GHGssion mean for G3 biofuels is quite similar to GHG
emissions for fossil fuel reference as defined W &d US regulations (respectively 83.8 g.€§MJ
(same reference for gasoline and diesel) and 926,q9/MJ (mean of US gasoline and diesel references)).
GHG emission mean value indicates that G2 biofoeldd induce a GHG emission reduction compared to
fossil fuel reference from 69% to 72% (dependinglanfossil fuel reference chosen). So, from asieal
point of view, G3 biofuels seem to emit more GHGs=mons during their life cycle than G2 biofuels.the
same way, GHG emission mean for BtL is lower thanEthanol (GHG emission savings compared to
fossil fuel reference from 77% to 79% for BtL amdrh 65% to 68% for Ethanol).

The range of GHG emission results for G3 biofuslyery wide compared to the one for G2 biofuel as
illustrated by their standard deviations (see Td&)leHence G3 biofuel could emit 20 times more GHG
emissions than fossil fuel reference whereas Gfubiacould emit from 4 to 9 times more by considgri
the maximum variation of the results. Converselymenimum results are negative and quite similar G2
and G3 biofuels.

Even if LCA results are inconclusive regarding GHfission performances of advanced biofuels because
of a wide range of variation, some trends can Heritified: on average, GHG emissions for G3 bicfuek
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higher than for G2 biofuels and GHG emissions ftialBol are higher than for BtL. Thus, the type of
biofuel seems to be a variable that could explam differences of GHG emission results for advanced
biofuels.

o  Whole sample (mean: 34,45 gC0O2eq/MJ) e G2 sample (mean: 26,33 gCO2eq/MJ)
%  G3sample (mean: 88,87 gCO2eq/MJ) — — Fossil fuel reference
———————————— 650 -
o fele} o

Number of observations

XX X

600 800 1000 1200 1400 1600

gCOzeq/MJ

Figure 3 — Dispersion of LCA GHG emission resultsnicluded in the database for the different types dbiofuel

3.2.2 Observations per regions

We make the distinction between the geographiaation of the authors (affiliation of the first aot) and
the geographical location of the cases studiesg@egraphical location of inventory data).

Regarding the geographical location of the auth#®8p of studies are from North American (NA) author
(including US and Canada) and 53% are from Europedimors (including EU countries and Switzerland),
representing 32% and 67% of the observations ré&spBc(see Table B.3 in Appendix B). The otherdstu

is from Australian authors [43]. For G3 biofuel®2% of observations are from NA authors, 51% from
European authors and 7% from Australian authors Bo, 23% of observations are from NA authors and
77% from European authors. For Ethanol, 34% of ofadens are from NA authors and 66% from
European authors. In most of the studies, the ggdagal location of the authors fits with the gexgrical
location of the assessed pathways. Only 3% of tiserwations do not match ([63] and some observatbn
[54]). Therefore, we focus only on the geographloahtion of the authors as a measure of the patent
influence of geographical location on GHG emissions

On average for all types of biofuel, GHG emissiesults from NA authors seem to be lower than from
European authors with a gap that could be sigmfiee illustrated in Table 3 (e.g. from 0.22 g £GMJ
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for NA to 150.63 g C@qg/MJ for Europe for G3 biofuels). Hence, it se¢had the geographical location of
the authors can have an influence on the GHG eonis&iriability observed for advanced biofuels.

Table 3 — Statistical description of GHG emissionesults included in the database for the differentypes of biofuel and for
the different geographical location of authorg* expressed in g C£q/MJ)

Biofuel Location of #of Obs. (%) Median* Mean* Standard Extrema* Percentiles*
Qeneration _authors [Confidence Interval] deviation Min Max 5th 95th
G3& G2 All 593 21.60 34.45 89.34 -142.18  1377.90 -37.08 116.65
[27.26;41.64]
North America 198 (33%) 1261 4.72 42.78 -142.18 193.20 -79.66 55.40
[-1.24;10.68]
Europe 401 (68%) 26.05 48.47 101.54 -88.36 1377.90 2.44 144.68
[38.53;58.41]
G3 All 77 31.00 88.87 211.85 -96.47 1377.90 -85.00 332.20
[41.55;136.19]
North America 38 (49%) 17.99 0.22 68.67 -96.47 193.20 -89.89 134.98
[-21.62;22.05]
Europe 45 (58%) 61.86 150.63 253.44 -30.97 1377.90 8.69 676.39
[76.58;224.68]
G2 All 516 20.50 26.33 45.20 -142.18 518.40 -24.00 85.80
[22.43;30.23]
North America 160 (31%) 1241 5.79 34.12 -142.18 71.00 -60.07 49.47
[0.51;11.08]
Europe 356 (69%) 24.25 35.56 46.55 -88.36 518.40 1.00 100.76
[30.72;40.39]
G2-BtL All 155 14.50 19.04 35.78 -142.18 189.00 -18.50 69.05
[13.41;24.68]
North America 36 (23%) 6.10 -1.55 34.05 -142.18 47.61 -54.08 32.15
[-12.67;9.57]
Europe 119 (77%) 15.80 25.28 34.03 -88.36 189.00 2.11 85.76
[19.16;31.39]
G2-Ethanol All 361 24.30 29.45 48.39 -113.60 518.40 -25.56 89.78
[24.46;34.45]
North America 124  (34%) 15.39 7.93 33.97 -113.60 71.00 -61.12 49.99
[1.95;13.91]
Europe 237  (66%) 30.87 40.72 50.99 -42.00 518.40 1.00 104.55

[34.22:47.21]
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Figure 4 - Dispersion of LCA GHG emission resultsricluded in the database for G2 biofuels and for thdifferent
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Figure 5 — Dispersion of LCA GHG emission resultsiicluded in the database for G3 biofuels and for theifferent
geographical location

Figure 4 and Figure 5 presents the dispersion oGGhission results included in the database for the
different types of biofuel and for the differentogeaphical locations. These results are also coedpaith
their respective GHG emission minimum thresholdeshejing on their geographical location.

As already mentioned, the RED and RFS2 set minim@H& emission savings for biofuels. Their more
restrictive savings are set to 60% compared ta ttoeresponding fossil fuel reference (fossil freference
are slightly different). According to Figure 3, 828b GHG emission results from NA are compliant with
their more restrictive GHG emission minimum thrddhehereas only 59% from Europe are compliant with
their corresponding threshold. At this stage ofahalysis, we do not have objective reasons explaiis
systematic difference between NA and EU estimdtesay come from the use of a different set of tecal
variables, for instance, but it may also revealekistence of a potential publication bias in iberature.

In conclusion, this section based on descriptiatistics allows the formulation of some intuitioalsout
factors that could influence GHG emission resutisédvanced biofuels. The type of biofuels (&2G3
biofuel, BtL vs Ethanol) and the geographical location (North Ap®ervs. Europe) seem to have an
influence on the variability of GHG emission resulbr advanced biofuels. However it is not possiblee
more conclusive and accurate with the descriptig@ssics presented in this Section. Descriptiaistics
and inspection of graphics are very useful andnoftaselant but remain always vulnerable to subyecti
interpretation. Thus, more objective statisticaltteare needed, as those that could be doneMiRA By
using specific econometrics methods, we believeé $h®IRA should allow thei) confirmation of our
intuitions previously identified anil) to go further in the explanation of the varialiliy identifying and
guantifying the main variation factors.

23



Let us now develop thlRAbased on these LCA studies.

4 Results

Compared to narrative literature reviews, MBA methodology allows ug to statistically identify main
drivers of thee-s variability andii) to estimate both the direction and the magnitudéheir respective
effects across primary studies under considerafitre. logic of MRA is illustrated here by applying this
methodology to LCA literature evaluating GHG enoss of advanced biofuels. We first present MiRA
model and its results for various G2 and G3 biofudi-samples. Second, we use the techniqiemdfits
transfer using meta-regression modegpropose a first attempt of harmonization ostheCA results.

4.1 The meta-regression model

Simply stated, to review a specific environmentadleation literature, one must summarize its presio
results already published on the issue under ceratidn.

We considet advanced biofuels GHG emission estimatesgetiseindexed byi =(1,...,1 ) and assume that
the 'true" e-svalue for a given estimate is given‘fy

y=a+ X B+u,0i=1... (8)
(1K) (K1)

where y, is the truee-s a is a common factorX; is a vector that measures characteristics of ibieidd
case study and of the study under consideratris a vector of parameters to be estimated, anes

normally distributed with mean zero and variamge: 44 ON (O,rjj )
The 'true" e-svalue, y,, is not observed. Instead, each study providessamateck-S 9, , SO that:
V=y+e=a+X B+y+eg, 0i=1,.., (9)
(1K) (kY

where ¢ is an error term that is normally distributed witmean zero and variance
ol 0ON(0,07), 0i=1,.. |

Thus we allow thetfue" e-sand the precision of the estimated; o7, to vary across estimates. The term
o?, is known as the within-variance and varies froodgtto study. As already mentioned, it is usually

taken as given and derived from the original eséma
Any remaining heterogeneity between estimatestieeexplainable by the observable differences neade

through the moderator variables containedkinor is random and normally distributed with mearozand

variancer?. , the between-variance.

i
If T;21,i =0, the model is referred to the fixed-effects moa@eid it is assumed that all heterogeneity in the

"true" e-scan be explained by differences in study charsties. If the between-variance is not equal to
zero, the model is a REM, which is usually referteda "mixed-effects” model because it contains

observable "fixed" characteristics i, as well as a random unobservable component witnrzero and
variance rf,,i. The unknown variance can be estimated by antitergrestricted) maximum likelihood

process or, alternatively, using the empirical Bayethod, or a non-iterative moment estimator.
Note that the meaning of the adjectives "fixed" arashdom" in theMA literature is different from the usual
interpretation for panel data models in standamhemetrics, because they refer to assumptions aheut

13 The following presentation is partly inspired fréteady [114].
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underlying populatior-s[38]. In standard econometric terms, the fixedet§ meta-estimator is equivalent
to the weighted least squares (WLS) estimator uiagestimated variances (derived in the primaugiss)

as weights and re-scaling the standard errors efntbta-regression by means of the square rooteof th
residual variance. The random effects estimatakis to a random coefficient model in which thehant
and between-study variances are used as weight$.[90

4.2 Meta-regression analysis results

Since the studies in the primary literature may didierent data sets and different ways of modelivg
have good reasons to suspect the heteroskedasticity

A common approach is to use White's Heterosked@stitsistent Covariance Matrix (HCCM). This
estimator simultaneously corrects for heteroskédgstnd cluster autocorrelation, and hence actotor

the multiple data setup by allowing different vacdas and non-zero covariances for clusters of
measurements from the same study. However, theeVdstimator is arguably rather restrictive assuming
that all differences across observations and studlie observable and can entirely explain the ecapir
heterogeneity. In addition, the White estimatorslaet fully exploit all available information becauit
estimates the variance rather than taking it asrgor recoverable from the primary studies.

The latter can be remedied by using the fixed-&ffeweta-estimator that we already presented. Amierqul

above,o?; is a sample estimate of the standard deviatiohefmneta-regression errors. When this kind of

measure of the heteroskedasticity is availabley Wweighted Least Squares (WLS) becomes the obvious
method to obtain efficient estimates of eq. (9).

We start out by presenting the results obtainedHer'wholé' sample, which includes all the G2 and G3
biofuel studies included in the meta-database. IRéw=# our meta-database includes variables reptesy

i) technical data/characteristiag, author's methodological choices amjl typology of the study under
consideration. As technical data are specific whegpe of biofuel, it is not possible to includest set of
variables in theWwhole' sample in order to test and quantify their regpednfluence. In order to capture
characteristics of each biofuel generation andtype of fuel analyzed, one needs to break tkolé'
sample into these respective sub-samples. The qudasesections present then results for smallepkesm
named as follows: G3’, "G2' samples and thenG2-BtL' and 'G2-Ethanol sub-samples. Hence, the
"whole' sample corresponds to the merge of 088" and 'G2' samples. Note that the53' and 'G2'
samples have been cut to 90% in order to excludéemu which may have spurious influence on
econometric estimates, as it is usually done ifdieggconometrics. So-defined, th&é2' sample contains
464 observations (321 for Ethanol and 143 for Bihjl the G3' sample contains 69 observations. (See
Figure 4 and Figure 5 for a visual representatibnG2' and 'G3' samples outliers).G2-BtL" and 'G2-
Ethanol' sub-samples are a subset of tE2" sample.

Results of eq. (9) are presented in Table 4 forwele' and 'G2' samples, and Table 5, Table 6 and Table
7 provide results for theG2-Ethanol, "G2-BtL' and 'G3" sub-samples respectively. For each model,
results are systematically reported for two différeorrections for heteroskedasticity: the firstiraator
uses the White's Heteroskedastic-Consistent Cowaidatrix (HCCM) (as denoted by the number 1 in
columns) and the second one uses Weighted Least&(WLS) using inverse standard error weights (as
denoted by the number 2 in columns).

Unless it is indicated, all regression results@esented in reduced form. These models were chpsére
general to specifi@approach to econometrics modeling. As usual, "}***" and "*" respectively indicate
1%, 5% and 10% significance levels and standardrerof the coefficient estimates are reported into
brackets. In each column, "-" means that the véiahder consideration has been first includedfinatly
removed from the reduced form because its coeffiastimate was not statistically significant a& #0%
significance levels. Regarding model informatibhandMean dep. Vaindicate respectively the number of

¥ Thompson & Sharp [115] provide an overview of gas estimators that allow for random-effects viiat
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observations used to perform each regression andatiesponding mean of the dependent variablehee
meane-sexpressed in g GOg/MJ of biofuel.

In all tables, the quality of regressions is check@ough the following diagnostic tests. Giventttiee
simple R-squared statistic is sensitive to the remd§ variables included, only the adjusted R-sgdas
reported Adj. R-squ).. The overall fit of the regression model is asedsby the logarithm of the Likelihood
(Log-Likelihood and the standard Fisher test which test for jagmiBcance. The statistic of the latter test
(F-stat) and the corresponding measure of its statispoabability (P.valug are systematically reported.
The null hypothesis of this test is all coefficeriut the constant one is equal to zero. Two auiiti
diagnostic tests for the quality of the regressi(asd theirP. value$ are also reported: the Skewness's
asymmetric test3kewnegsand the Kurtosis's normality tedyrtosig of residuals. They respectively
correspond to a test of skewness and nonnormabdkarcompared with the null hypothesis of symmetry
(the skewness coefficient is zero for symmetricallgtributed data) and kurtosis coefficient of heT
normality tests examine the normality of the realduNonnormal residuals invalidate hypothesisstest
individual variables as these tests assume themaldy, and is therefore an important consideratiall
Tables also report the following two informationtena: the Akaike's Information CriteriorA[C) and the
Schwarz's Bayesian Information CriteriddlC). These two standard measures are used to allmmésted)
model comparisons. SmallatC andBIC are preferred, because higheg-Likelihoodis preferredFinally,

in order to test and hence statistically confirra tinportance of including technical data/charastes in
our models, it has been chosen to perform a likelratio test. The statistic of this teER(tes} and its
correspondingp. valueare reported in Table 5, Table 6 and Table 7.lifkedNested modehdicates against
which model the investigated model is tested. mnemetric terms, the nested model is the restrictedel
and corresponds to the reduced model without arhnteal data/characteristics.

We turn now to the comments of the results obtafoecdach samples and sub-samples. We only focus on
the signs and significance of the estimated caeffts since the absolute magnitudes of those oefts
are not important.

4.2.1 Results for the whole sample

Estimates results for thevhole' sample are presented in Table 4, columns (1a&t (2aAll). Eqg. (9) is
estimated using both the White's HCCM (column (1jgAlable 4) and the WLS (column (2aAll), Table 4)
estimators. Contrary to economic primary studiesjances are usually not reported for each estimmate
LCA primary studies and have to be retrieved (teBaiction 3.1.3). For each observation of MBA
variances have been directly inserted in the databa calculated depending whether the observatiens
coming from primary studies performing Monte-Cadoalysis or sensitivity analysis, respectively. &s
consequence, the database does not provide a simaglsure of the variance for each observationttisr
reason we prefer to comment coefficient estimatasioed by OLS estimator with a White procedure —
OLS (White's HCCM)as indicated in last line, Table 4, — rather thdrS However, we let WLS estimates
for robustness check since they yield to similauhs. The same choice is applied to the remaintiéne
paper to simplify the exposition.

Thus, we only comment results presented in coluba\), Table 4. 533 observations are includedhis t
regression. As already explained in the previoudi&e this regression only aims at testing thé&ugrice of
i) the type of biofuelsgen_3, ethandbtl variables) andi) the geographical locatiozléb_uszlab euand
zlab_othey on thee-sin order to confirm or deny what have been hiditikgl with the visual inspections
presented in Sections 3.2.1 and 3.2.2. This malaexthe rather low level of the adjusted R-squgedzbut
16%). As judged by the F-stat. P. value, the jsighificance of results is accepted at the 1% &gamce
level.

As a first comment, the econometric results dispdiain Table 4 tend to confirm intuitions presented
Section 3.2, which were based on a simple visusddntion.ethaandbtl variables are indeed statistically
significant at the 1% level and their coefficieate negative. According to these parameter estean&teG
emissions are statistically lower for Ethanol antl BG2 biofuels) than for G3 biofuelsgén_3 by

respectively about 41 and 52 g €@Q/MJ. These results also confirm that life cyclel& emission
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performance is better for BtL than for Ethanol. Qa@a effectively not merge thethaandbtl variables, as
indicated by the Wald Test: we effectively rejette tnull hypothesis of this testH,, because

P. Value < 0.01 and conclude that the coefficient efhais statistically different from the one oifl.
Hence the biofuel generation is a key variablexan the variability of advanced biofuels LCA udts.

Regarding the geographical locatiarlab_usand zlab_othervariables have a negative impact on GHG
emissions — their coefficients are significantred 1% level. According to these results, GHG eroissiare
statistically lower when studies are from NA orrfr@ther countries (excluding NA and Europe) comgare
to those from Europe. Hence, the geographical iotcatppears to have an influence on GHG emission
results for advanced biofuels. There is no inteitigason to explain the geographical influenceliggted

by our results. At this step of the analysis, tieisult could be explained by either a model misi$igation

or the existence of a publication bias. The formauld correspond to missing variables in our datapa
hence the geographical location could be a shadmmahle hiding areal determinant. For instance, the
geographical location variable could hide a sekeohnical data specific to one location. Unfortehatit is

not possible to include such variables in téhdlé' sample model. To test this hypothesis, thddl€'
sample is thus divided into G3 biofuel sample and KBofuel sample in order to assess specific
characteristics (including technical data) of elidiuel generation.
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Table 4 — Results oMRA for the econometric samples Whole and G2 biofuels

Samples Whole Whole G2 G2 G2 G2
Model laAll 2aAll 1laG2 2aG2 1bG2 2bG2
Constant 76.27*** 271.74%= 20.32%* 27.24%* 21.14%* 28.43%*
(13.64) (23.66) (3.43) (4.72) (3.61) (5.04)
Technical data
gen_3 (ref for Whole)
etha -41.39%*  -220.92%** 5.84%** 5.83***
(13.14) (23.77) (1.92) (1.81)
btl (ref for G2) -52.12%*  -215.57***
(13.36) (22.59)
mat_cult -9.47%+* -11.56%**
(2.21) (3.02)
mat_cultxdluc -7.94%%* -13.67***
(2.46) (3.23)
Methodological choices
Ica_att (ref)
Ica_cons -33.66*** -40.41%** -34.04%** -39.09%**
(4.79) (8.63) (4.9) (8.37)
copval_alloc 8.96*** 8.82** grxx 6.99*
(1.91) (3.62) (1.94) (3.84)
copval_systexp (ref)
copval_hyb 5.25%* 5.41%
(2.38) (2.69)
luc_dir - -
luc_indir 29.97%** 39.78%* 29.62%* 36.54%*
(6.32) (7.27) (6.34) (7.2)
uncer_MC 8.03** 16.68*** 8.04** 17.25%*
(3.45) (4.61) (3.41) (4.58)
uncer_SA 7.78%** 7.08* 7.32%%* 6.69**
2.4) (3.63) (2.39) (3.39)
uncer_ref (ref)
impcat_nev 9.26%** 7.71%%*
(2.99) (2.71)
impcat_nrc -15.01%** -7.31% -12.65%**
(2.36) (3.41) (2.54)
impcat_other - - 0.84*
(0.49)
impcat_gwponly (ref)
Typology of the study
zlab_us -24.6%+* -190.58*** -8.32%+* -18.58*** -8.66*** -19.73%**
(3.97) (25.05) (2.1) (3.66) (2.12) (3.2)
zlab_eu (ref)
zlab_other -85.69%**  -281.16***
(15.6) (24.85)
Model information
N 533 533 464 464 464 464
Mean dep. Var. 28.64 17.62 24.15 25.04 24.15 25.01
Adj. R-squ. 16.30% 68.76% 37.26% 30.95% 38.33% 30.94%
Log-Likelihood -2727.20 -3068.04 -1976.89 -2044.50 -1972.36 -2044.03
F-stat. 18.93 32.82
(P. value) (0,0000) (0,0000)
Skewness 61.27 24.57 23.56
(P. value) (0,0000) (0.017) (0.0354)
Kurtosis 8.75 1.6 3.06
(P. value) (0.0031) (0.2062) (0.0801)
AIC 5464.39 6146.08 3977.78 4113.00 3970.72 4114.05
BIC 5485.79 6167.47 4027.45 4162.68 4024.54 4167.87
Wald Test (P. value) for 26.29 0.22
etha=btl (0,0000) (0.6409)
OoLS OoLS OoLS
Procedure (White's WLS (White's WLS (White's WLS
HCCM) HCCM) HCCM)

4.2.2 Results for the G2 sample

Estimates results for th&52' sample are presented in Table 4, columns (1la&P3iG2). Our comments
are based on results presented in column (1laG2)adljusted R-squared is now equal to about 37%.

Technical variables

etha variable is statistically significant at the 1%véé and impacts positively GHG emissions for G2
biofuels. Thus GHG emissions are higher by abogit®3,eq/MJ for Ethanol than for BtL. The type of fuel
conversion technology can thus explain the vaiighof GHG emission results for G2 biofuels. G2 gdan

is then split into G2-Ethanal sample and G2-BtL' samples in order to take into account speciésitof
each fuel (see Sections 4.2.3 and 4.2.4, respbgtive
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Regarding the influence ahat_cult this variable was tested first and had a negagffect on GHG
emissions for G2 (results reported in columns (Do&xd (2bG2), Table 4). Most LCA studies do not
account for upstream burdens related to residudustmn and cultivated feedstock needs more inputs
(especially fertilizers and pesticides) to be pastl[3] so this result was unexpected. Howeves &lso
well known that perennial energy crops can stock@aunderground [91]. Therefore, our counter-tntai
result can be explained by this fact, but onlyiredt LUC is accounted for (accounting for aboveuyd
and underground carbon sequestration). However etead thatluc_dir variable is not statistically
significant. Hence, we decided to combingat_cult variable with luc_dir variable (aggregated in
mat_cultxdlug in order to confirm this effect (results reporiaccolumns (1aG2) and (2aG2), Table 4). Our
meta-model shows thahat_cultxdlucvariable is statistically significant at the 1%vdé and impacts
negatively GHG emissions for G2 biofuels. It me#mst GHG emissions for G2 biofuels produced from
cultivated feedstock that take into account dLU€ kwer than GHG emissions for G2 biofuels from
cultivated feedstock that do not take into accodbtUC or from waste feedstock. Thus, the type of
feedstock combined with the fact to take into act@lUC influence GHG emissions for G2 biofuels.

Methodological variables

Ica_consvariable is statistically significant at the 1%aééfor "G2' sample. Its coefficient is negative so
GHG emissions for G2 biofuels are lower with a @meential approach compared to the attributional
approach. The type of LCA approach thus influer@El§&s emission results for G2 biofuels.

copval_allocand copval_hybvariables are statistically significant at the H#d 5% level, respectively
(column (1aG2), Table 4). It confirms the influenmfethe method for taking into account coproduats o
LCA GHG emission results as often mentioned inliieeature [60]. The coefficients of both variabka®
positive which means that GHG emissions are lowerG2 biofuels when using the system boundaries
expansion methodcépval_systexypcompared to allocation method and hybrid methétk observed,
however, that most LCA authors recognize the ingrar¢ of the method of taking into account burdens
associated to coproducts. 91% of the studies in database test alternative methods for allocation
performing a sensibility analysis.

luc_indir is statistically significant at the 1% level. kiadl be noticed that all studies assessing indicedE
(luc_indir) always assess direct LU@¢_dir), soluc_indir is equal to 1 when the study assesses both direct
and indirect LUC. Neverthelesgc_dir is not statistically significant. We can then clowle that assessing
indirect LUC increases GHG emission results for @ifuels asluc_indir coefficient is positive.
Nevertheless, the direct LUQu¢_dir) has an influence but it is linked with the typebtcomass feedstock
used, as mentioned before.

impcat_ney impcat_nrc variables are both statistically significant ae th% level. The type of other
environmental indicators than GHG emissions asdegs¢he study thus could influence GHG emission
results for G2 biofuels. According to our resul&1G emissions are statistically lower when the wtud
assesses the Net Energy Valuapcat_ney and are statistically higher when the study aseseshe Non
Renewable Energy consumptiampcat_nrg. This effect could not have been anticipated. é¥heless, it
could be interpreted as a quality indicator for #tedy: when these energy indicators are consigtent
assessed, the GHG emission result can be consittebedmore robust.

Variables related to the methods for taking int@oamt uncertaintiesugcer MC and uncer_SA are
statistically significant and impact positively taenount of GHG emissions emitted for G2 biofuelsisT
effect is unexpected. It means that GHG emission&R biofuels are statistically higher when urnaiaties
are taken into account wa Monte Carlo methoduficer_MQ or Sensitivity analysisuficer_SA — than
when there is no uncertainties assessmamtgl_ref. The fact to assess uncertainties could be irgtzg
also as a quality indicator of a study. It can éensas an effort to establish the accuracy ofdkelts but the
tendency of the influence of these parametersareth could not be anticipated nor explained atiena:
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Typological variables

Lastly, zlab_usvariable has a negative impact on GHG emissiodsisasignificant at the 1% level. Again,
GHG emissions for G2 appear to be statisticallydowhen the authors are from North Amerizkalp u$
compared to authors from Euromap_ey. Hence, the geographical location of the autlatge influences
GHG emission results for G2 biofuels.

4.2.3 Results for the Ethanol sample

Estimates results for thes2-Ethanol sample are presented in Table 5. Columns (1cEdhd) (2cEtha)
correspond to the model without the inclusion @& téchnical variable that is the mass yield ofgathway
(g2_mass_yield Columns (1bEtha) and (2bEtha) test the existavfca linear effect of this variable
(g2_mass_yieldwhereas columns (laEtha) and (2aEtha) test tlsteaxe of a non-linear effect of this
variable by taking the logarithm of tlg2 _mass_yieldiariable §2_mass_yield ) The AIC and the BIC
both decrease from the first specification (colurtireEtha) and (2aEtha)) to the last one (columaoEt{ia)

and (2cEtha)). Therefore, the inclusion of a nowedir effect of the mass yield of the pathway appeaire
relevant to explain GHG emission variations. Thws, choose to comment results presented in column
(1aEtha).

Technical variables
mat_cultxdlucvariable is significant at the 5% level and has same effect on GHG emissions for Ethanol
as for G2 biofuels (See Section 4.2.2)

The mass yield of the pathwg®2_mass_yield_Impacts negatively GHG emissions for G2 Ethanolictvh
is an intuitive effect: the better the mass yiadthe less GHG are emitted all along the biofifieldycle,
ceteris paribuslt should be noticed thg2_mass_yield_ltraduces a non-linear effect of this variable.

We should also mention that variables related twemttechnical data, such as the type of biomass
pretreatment, are not statistically significant Edhanol. Indeed, 83% of observations are relaiegithanol
produced using dilute sulfuric acid pretreatmernt arost of these observations use technical dama fre
same study (NREL) [92]. Hence pretretament prosesmbles for Ethanol are not really discriminatory
and this could explain why those variables arestatistically significant.

Methodological variables

Among significant variables found for G2 biofuelngale, Ica_cons, luc_indir, impcat_nev, impcat_nrc
uncer_MCanduncer_SAvariables are also significant for the Ethanohgke and have the same impact as
described for the G2 sample. So the type of LCAr@@gh, the fact 'to assess indirect LUC', the type
other environmental indicators, the method forrgkinto account uncertainties influence GHG emissio
results for G2 Ethanol.

It can be noticed thatopval_allocandcopval_sywariables are no longer statistically significartis result
is surprising regarding a previous lignocellulostbanol LCA studies review [13] which concludestttee
treatment of coproducts has a strong influenceenCA results.

Typological variables

zlab_usvariable has a negative impact on GHG emissiodsiasignificant at the 5% level. It means that
GHG emissions for Ethanol are statistically lowenew the authors are from North Americdabp u$
compared to authors from Euromap_ey. Hence, the geographical location of the autlatge influences
GHG emission results for Ethanol.
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Table 5 — Results oMRA for the econometric samples G2-Ethanol biofuels

Samples Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol
Model laEtha 2aEtha 1bEtha 2bEtha 1cEtha 2cEtha
Constant -5.88 319 46.39%** 37.85%** 32.11%* 34.07%*
(14.8) (31.58) (8.33) (13.52) (2.64) (3.95)
Technical data
mat_cultxdluc -7.18* -10.1* -6.91** -9.92%* - -
(3.26) (4.85) (3.28) (4.79)
g2_mass_yield -73.57* -
(34.79)
g2_mass_yield_sq
g2_mass_yield_In -23.22% -
(9.3)

Methodological choices
Ica_att (ref)

Ica_cons -38.24x** -40.12%** -38.43*** -40.17%** -40.24%** -40.72%**
(5.53) (11.37) (5.46) (11.33) (4.72) (9.9)
luc_indir 29.01** 35.89%* 27.48** 35.07** 19.85%* 31. 7%
(7.49) (8.59) (7.41) (8.43) (7.29) (7.78)
uncer_MC 9.51** 20.32%** 9.66** 20.43%* 10.06** 18.67***
(4.06) (5.83) (4.11) (5.82) (4.23) (5.5)
uncer_SA 12.5%** 12.28** 11.53%= 11.99** 12.09%** 14.01%**
(3.68) (5.71) (3.59) (5.57) (2.72) (4.08)
uncer_ref (ref)
impcat_nev 12.34%*=* - 11.05%*=* - 9.51** 11.15*
(3.99) (3.99) (3.94) (6.49)
impcat_nrc -17.09%** -14.16%** -17.24%x -14.18%** -22.53*** -20.14%*x
(3.19) (5) (3.17) (5) (2.51) (4.08)
impcat_other - - - - -1.09* -
(0.61)
impcat _gwponly (ref)
Typology of the study
zlab_us -7.29** -28.56%** -8.22** -29.23%** -11.26%** -23.84x*x
(3.56) (7.44) (3.56) (7.35) (2.37) (4.74)
zlab eu (ref)
Model information
N 209 209 209 209 321 321
Mean dep. Var. 19.70 19.14 19.70 18.96 26.61 26.61
Adj. R-squ. 31.21% 36.31% 30.32% 36.24% 40.13% 37.82%
Log-Likelihood -884.15 -919.42 -885.49 -919.54 -1364.10 -1412.35
F-stat. 12.61 10.91 12.55 10.79 33.94 27.19
(P. value) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000)
Skewness 18.14 16.84 18.16
(P. value) (0.0527) (0.078) (0.0333)
Kurtosis 0.32 0.23
(P. value) (0.5729) (0.6351)
AIC 1790.30 1860.83 1792.98 1861.08 2748.21 2844.70
BIC 1827.07 1897.60 1829.75 1897.85 2785.92 2882.42
LR test (P. value) 959.9 985.87 957.22 985.62
Nested model: model (c) (0,0000) (0,0000) (0,0000) (0,0000)
OoLS OoLS OoLS
Procedure (White's WLS (White's WLS (White's WLS
HCCM) HCCM) HCCM)

4.2.4 Results for the BtL sample

Estimates results for theG2-BtL' sample are presented in Table 6. Columns (leBihd (2eBtL)
correspond to the reduced model obtained for @& sample. Columns (1dBtL) and (2dBtL) correspond to
the new reduced model without any technical variables.u@wls (1aBtL) to (2cBtL) correspond to the
reduced model with technical variables. Column®{lLpand (2aBtl) are the only one to test a nomdin
effect of the mass yield of the pathway. The AlQI dne BIC both decrease from the first specifigatio
(columns (1aBtL) and (2aBtL)) to the last one (oohs (1eBtL) and (2eBtL)). Thus, we choose to contmen
results presented in column (1aBtL).

Technical variables
mat_cultxdlucvariable is significant at the 1% level and has $hhme effect on GHG emissions for BtL as
for G2 biofuels (See Section 4.2.2)
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Variables related to the type of conversion intelfprocess ktl_pro_alng and btl_pro_aleleg are
statistically significant. Using natural gas asoairse of heat for an allothermic BtL unit leadshigher
GHG emissions than producing BtL from an autotherptant (biomass provides all process energy needs)
Conversely using grid electricity as a utility fan allothermic BtL unit leads to lower GHG emissidhan
producing BtL from an autothermic plant. The souwtelectricity used could explain these resuhsleled,
among the observations using grid electricity astiaty for an allothermic BtL unit, 57% of these
observations use electricity provided by wind poplants [58]. The other studies do not precisesthace

of electricity used.

The mass yield of the pathwagp_mass_yield_limpacts negatively GHG emissions for BtL, whichais
expected effect: the better the mass yield is|dbe® GHG emissions are emitted all along the pattama
G2 biofuel. It should also be noticed tig& mass_yield_ltraduces a non-linear effect of this variable.

It should be noticed that variables related to oteehnical data, such as the type of biomassqattrent or
the inclusion of Carbon Capture and Storage (C@3he process, are not statistically significant BoL.
Indeed, 90% of observations in the econometric $amape related to BtL produced without biomass
pretreatment (See Table C.4 in Appendix C). Heme¢rgmtment process variables for BtL are not yeall
discriminatory, and this may be the reason whydh@siables are not statistically significant. Morer, the
variablebtl_ccsis equal to zero for the econometric sample (SHaerC.4 in Appendix C), therefore this
variable could not have been tested. In fact, Hregable in question appears in only three obsermatand

all of them are considered outliers (see Tablei Appendix B).

Methodological variables

Among significant variables found foG2' sample, onlycopval_allocandlca_consare significant for the
"G2-BtL' sample. The method for taking into account copotsl Copval_allog has the same impact as
described for G2' sample ¢opval_hybfor BtL is equal to zero). However the influendelee type of LCA
approach is not the same for G2 biofuel and for:BHHG emissions are higher with a consequential
approachla _cong compared to an attributional approatta(at). So the type of LCA approach and the
method for taking into account coproducts influe@#¢G emission results for BtL.

Furthermore, the type of coproduct influence GHGssmn results for BtL sinceop_elecvariable is
statistically significant at the 1% level. So tremduction of electricity for BtL decreases GHGigsions
compared to other coproductsgteris paribus

Typological variables

zlab_usvariable has a negative impact on GHG emissiodsiasignificant at the 1% level. It means that
GHG emissions for BtL are statistically lower whae authors are from North Americdgb_u3 compared

to authors from Europezlgb_e). Hence, the geographical location of the auttadss influences GHG
emission results for BtL.
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Table 6 — Results oMRA for the econometric samples G2-BtL biofuels

Samples BtL BtL BtL BtL BtL BtL BtL BtL BtL BtL
Model laBtL 2aBtL 1bBtL 2bBtL 1cBtL 2cBtL 1dBtL 2dBtL leBtL 2eBtL
Constant 43.23*** 29.68 70.94xx* 75.11%** 39.6%** 32.19%* 27.43%** 29.03*** 16.03** 24 5%**
(12.66) (20.05) (9.38) (12.85) (6.29) (6.36) (5.59) (5.69) (6.33) (8.38)
Technical data
mat_cultxdluc -14.41%*= -19.53*** -15.41%* -20.33*** -15.16*** -18.1%+* -16.24%* -17.02%* -11.64%** -13.28%**
(3.08) (3.27) (3.11) (3.23) (2.93) (2.84) (2.47) (2.6) (3.98) (4.46)
cop_elec -44.56*** -35.68*** -43.99%** -35.94%** -19.4%+* - - -
(4.14) (7.7) (4.19) (7.71) (5.09)
g2_mass_yield - -
g2_mass_yield_sq
g2_mass_yield_In -11.66* -17.41%
(7.04) (8.52)
btl_pro_autoth
btl_pro_alng 17.04%* - 17.73%* - 13.85*

(5.4) (5.73) (5.6)
btl_pro_alelec - - - - -
btl_pro_alrenew
btl_gasrecycl
Methodological choices

Ica_att (ref)

Ica_cons 25.61%* - 26.23*** - 22.97%** - 18.1**
(8.36) (8.6) (8.68) (8.87)

copval_alloc 9.6%** - 9.81%** - 13.73%* 12.51%* 16%** 11.02* 11. 7% 13.21%*
(3.37) (3.4) (3.05) (4.33) (2.96) (4.65) (2.79) (4.31)

copval_systexp (ref)

copval_hyb

luc_indir

uncer_MC

uncer_SA

uncer_ref (ref)

impcat_nev

impcat_nrc

impcat_other

impcat _gwponly (ref)

Typology of the study

zlab_us -21.42%* - -24.38** -16.37* -22.11%** -16.59%** -16.51%** -14.91%** -11.41*%* -17.34%*

(4.8) (4.71) (9.57) (4.35) (5.51) (4.09) (5.03) (4.93) (5.29)

zlab_eu (ref)

Model information

N 132 132 132 132 141 141 143 143 143 143

Mean dep. Var. 19.45 21.96 19.45 21.84 18.80 22.29 18.65 22.22 18.65 21.62

Adj. R-squ. 39.48% 26.01% 38.39% 23.56% 35.19% 25.06% 31.39% 25.56% 33.22% 24.68%

Log-Likelihood -548.53 -568.94 -549.72 -571.09 -589.14 -608.32 -603.08 -618.57 -599.04 -617.29

F-stat. 16 15.66 11.34 10.69

(P. value) (0,0000) (0,0000) (0,0000) (0,0000)

Skewness 12.64 13.7 13.31 12.09 16.91

(P. value) (0.2445) (0.1869) (0.1492) (0.0336) (0.0501)

Kurtosis 2.53 2.38 2.22 1.64 1.52

(P. value) (0.1117) (0.1232) (0.1364) (0.2004) (0.2184)

AlC 1115.07 1155.89 1117.44 1160.18 1194.29 1232.65 1218.17 1249.13 1218.07 1254.57

BIC 1141.01 1181.83 1143.38 1186.12 1217.88 1256.24 1235.95 1266.91 1247.70 1284.20

LR test (P. value) 109.1 99.25 106.73 94.96 27.88 20.49 8.09 2.56

Nested model: model (d) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000) (0.0882) (0.6336)
OLS OoLS OoLS OoLS OoLS

Procedure (White's WLS (White's WLS (White's WLS (White's WLS (White's WLS
HCCM) HCCM) HCCM) HCCM) HCCM)

We turn now to the analysis of th&3" sample.

4.2.5 Results for the G3 sample

Estimate results for theG3' sample are presented in Table 7. We begin by cemimg the impact of
g3_productivityandg3_oil as the influence of these two continuous techniaalbles will determine the
final specification of the model for th&3' sample.

Technical variables

First, a lin-lin model is specified in order to tiéise linear effects of both3_productivityandg3_oilon the
e-s Table 7, columns (1dG3) and shows the reducenh fofr this specification. It could be noticed that
g3_productivityvariable is not statistically significant. This wéisis non intuitive as most part of the
literature mentions that algae productivity coulghlain the variability of GHG emission results. Then-
significance of this variable may be explained g &xistence of a non-linear effect instead ohedr one.
To test this hypothesis, two models are specifiedhe first one (Table 7, column (1cG3)), the nioear
effect is modelled as a second-degree polynomiaintipducing the variabley3_productivityand its
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squared valueg@_productivity sy In the second one (Table 7, column (1bG3)), lihear effect is
modelled as a logarithmic function by introduciy®) productivity Innstead ofy3_productivity In Table 7,
column (1cG3), neithey3_productivitynor g3_productivity sare statistically significant at the 10% level.
On the contraryg3_productivity_Inis statistically significant at the 1% level (Tald, column (1bG3)). As

a conclusion, the variabg8 productivitydoes have an impact on GHG emission results fobiGBels but
this effect is non-linear which can be capturedabpgarithmic function, not a second degree polyiabm
Regardingg3_oil, results presented in Table 7, column (1bG3) miéE a negative linear influence of this
variable. Finally onlyg3_productivity Inandg3_oil_Invariables are statistically significant at the el

and their coefficients are both negative (Tabledlumn (1aG3)). Thus, we choose to comment results
presented in column (1aG3).

Algae productivity value and the oil content — asxees of theg3 productivityand g3_oil variables,
respectively — influence GHG emission results f@ K®ofuels. They have a negative impact on GHG
emissions so the higher algae productivity or fgaecontent is, the lower GHG emissions are. thtech,
these non-linear effects indicate that those paenmeare more sensitive for low productivity or law
content than for high ones.

The variablehvo is statistically significant at the 1% level. Acding to its coefficient estimate, GHG
emissions for HVO from algae are higher than GHGssions from FAME from algae by about 134 g
COseq/MJceteris paribuslt indicates that the type of fuel conversiorhtamlogy can explain the variability
of GHG emission results for G3 biofuels. This résutifficult to be interpreted, especially duethe extent
of its coefficient. In fact, the literature shovisat upstream fossil energy consumption (includihgnputs,
notably methanol and hydrogen production) is simitaFAME and HVO processes [93] Vegetable oil
consumption for both processes is also quite simila

The coefficient ofg3_Opponds negative and significant at the 1% level. GHGissions for G3 biofuels
are thus statistically lower when microalgae am@agr in an open-pound than in a photobioreactor.dden
the type of technology used for microalgae cultoainfluences GHG emission results for G3 biofuels

The type of technology used for microalgae cultosatthe algae productivity and the oil contentatgae
are often identified as key parameters in G3 biofu@A studies. So the fact that those variables are
statistically significant confirms previous conctuss found in the literature. Jorqueed al. [94], in a
microalgae LCA study (not included in this revieachuse conversion into biofuel is not includedpveh
that culture in photobioreactors is more energeneive than in open ponds. One of the conclusidns o
previous literature review on biofuel from microaég technologies [95,96] is that microalgae strains
presenting high biomass productivity are betteiG@p emission mitigation.

Methodological variables

Concerning methodological variables, ofdg_consvariable is statistically significant at the 1%éé for

G3 sample. Its positive coefficient indicates tkdiG emissions for G3 biofuels are statisticallyhag
when the study uses a consequential approach fér ddnpared to the attributional approach. Hence the
type of LCA approach influences GHG emission resfdt G3 biofuels. However, note that consequential
LCA approach is only used by one study (that resmtss 9% of the observations for the econometric
sample). Consequently the influence of the type@A approach for G3 biofuels should be interpreteith
caution.

Liu et al. [17], in an LCA harmonization exercise, show tll#ferent authors accounted for different
microalgae coproducts and that it plays an importate in the final life cycle GHG emissions of the
biofuel. However, in our meta-regression, varialsedated to the coproducts did not show themselvdze

5 |n the Ecolnvent database [116], the cumulativesifoenergy demand for the production of 1 kg ofifegen from cracking
natural gas is 70, 9 MJ. The same indicator forglok methanol also produced from natural gas i® 36J. FAME contains
around 10% of methanol and HVO around 4% of hydnogmass). The selected processes for this exampldéha most
commonly used for these products.
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statistically significant. Still, the fact thata_consis statistically significant warns us about theortance
of the definition of system boundaries and coprodgcounting methodology.

Typological variables

Regarding typological variables, the coefficientitab usvariable is significant at the 1% level and itgnsi
is negative whereaglab_otheris not statistically significant. Thus, the prewsoresult regarding the
influence of geographical location is partly reted: GHG emissions of G3 biofuels are statistickdiyer
when studies are from NA compared to ones from pirdhe non-significance afab_otherindicates that
there are no systematic differences between regtatsn from European studies and other countries.

Table 7 — Results oMRA for the econometric samples G3 biofuels

Samples G3 G3 G3 G3 G3 G3 G3 G3 G3 G3
Model 1laG3 2aG3 1bG3 2bG3 1cG3 2cG3 1dG3 2dG3 1eG3 2eG3
Constant 318.44**  550.41***  621.72**  916.55***  490.82*** = 640.23***  450.73***  585.43**  105.38***  237.46***

(90.09) (171.08) (99.61) (146.59) (87.74) (68.43) (88.11) (59.96) (19.91) (25.17)

Technical data

fame
hvo 134.18**  185.12**  135.18**  181.47**  137.73**  178.64**  134.31**  176.78***
(35.34) (39.47) (32.44) (34.94) (34.09) (35.28) (34.62) (34.69)
g3_productivity - -5.82%+* - -3.19%*
(1.86) 1.2)
g3_productivity_sq - 0.02**
(0.01)
g3_productivity_In -65.31%** -124 8** -64.46*%*  -127.33***
(20.13) (45.43) (20.06) (44.5)
g3_ail -434.74%*%  -521.06***  -425.28***  -522.41**  -430.6*** -527**x
(142.4) (112.68) (150.9) (110.74) (146.08) (115.09)
g3_oil_sq
g3 oail_In -140.32%*  -161.66***
(42.3) (39.17)
g3_Oppond -197.13**  -259.9%*  .198.94***  -260.33*** -201.93*** -257.79%*  -199.6*** -257.1%*
(34.6) (24.28) (36.92) (24.35) (38.32) (24.13) (38.46) (23.73)
Methodological choices
Ica_att (ref)
Ica_cons 172.72%* 250.7%** 174.8%* 254.66*** 196.92** 268.68*** 187.41* 290.31%**
(61.08) (70.3) (65.98) (73.36) (79.77) (81.63) (84.67) (86.21)
Typology of the study
zlab_us -207.56***  -259.02***  -198.73*** 244 44**  -201.53** -244.11%* -199.27** -240.76***  -95.93**  .225.96***
(31.01) (26.35) (29.55) (25.73) (30.19) (26.09) (30.8) (25.61) (26.17) (31.21)

zlab_eu (ref)
zlab_other - - - - - - - - -114.8***  -246.87***
(21.87) (26.35)

Model information

N 68 68 68 68 68 68 68 68 69 69
Mean dep. Var. 59.97 68.95 59.97 67.95 59.97 67.85 59.97 66.53 58.84 126.49
Adj. R-squ. 65.23% 80.63% 66.07% 81.32% 66.59% 81.92% 66.06% 81.34% 17.77% 48.39%
Log-Likelihood -373.01 -376.38 -372.18 -375.14 -371.08 -373.46 -372.19 -375.11 -410.22 -418.31
F-stat. 11.11 24.7 11.67 25.07 10.96 22.62 13.53 27.17 11.17 31.42
(P. value) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000)
Skewness 9.25 13.93 14.15 16.85 32.57
(P. value) (0.2352) (0.0524) (0.078) (0.0184) (0,0000)
Kurtosis 0.06 0.32 0.47 0.41 6.01
(P. value) (0.8139) (0.5694) (0.4938) (0.521) (0.0142)
AIC 762.02 768.75 760.36 766.29 760.17 764.92 760.37 766.23 828.44 844.62
BIC 779.78 786.51 778.11 784.04 780.14 784.89 778.13 783.98 837.37 853.56
LR test (P. value) 74.42 83.87 76.08 86.34 78.27 89.71 76.06 86.4
Nested model: model (e) (0,0000) (0,0000) (0,0000) (0) (0,0000) (0,0000) (0,0000) (0,0000)
OoLS OoLS OoLS OoLS OoLS

Procedure (White's WLS (White's WLS (White's WLS (White's WLS (White's WLS

HCCM) HCCM) HCCM) HCCM) HCCM)

4.3 Harmonization

The MRA results presented in Section 4.2 are now usedirness the harmonization issue in the field of
advanced biofuels GHG emissions thanks to the tguaknof benefits transfer using meta-regression
models As already demonstrated in the previous Sectiba, meta-regressiorframework allows the
production of an estimation of the meass weighted by the systematic influence of its maiwvets. Once
estimated, the meta-function can be used to dedrgmal values of the-sby specifying new values for
the main drivers identified corresponding to retevease studies. This techniquebaefits transfer using
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meta-regression modelas it is named in thdA literature, may be a particularly well adaptedmeblogy
to deal with the so-called harmonization issue jgo the LCA literature.

This section aims at providing an illustration loé tpotential foMRA to perform harmonization in the field
of LCA through an application to advanced biofuBlHG emissions. To do so, predicted values ofetise
are computed using the meta-functions estimat&eation 4.2.

The predicted values can be calculated using a c@tbn of variables that already exists in the anet
database: this type of prediction is called "in gkgh In sample prediction enables the comparisbn o
collected values (estimations of tkes and predicted values in order to check the acgucd the meta-
function in predicting the-s

Furthermore, predicted values can be extrapolabedafcombination of relevant variables that do not
necessarily exist in the meta-database, hence ribgicpon is called "out of sample”. Out of sample
prediction could provide values for tleesfor case studies not assessed in the literatmraddition, out of
sample prediction applied to quantitative varialaias help to test how sensible #asis to these variables.

First, in sample predictions are presented andyaedl Second, out of sample predictions are coeduct
assessing in particular the sensitivity of quatiiéavariables (algae productivity and oil contéot G3
biofuels, mass yield for BtL and Ethanol).

4.3.1 Prediction in sample

Table 8 presents some characteristics of predickees compared to collected values (estimatiornbex-

s in the meta-database) for each sample. The metkelsiased to calculate theisesamplepredictionsare
those estimated in columns (1aAll), (1aG2), (1akttiaBtL) and (1aG3) for thevholé' sample, the G2
sample, theG2-Ethanal sample, the G2-BtL' sample and theG3" sample, respectively (see Table 4,
Table 5, Table 6 and Table 7).

First, we observe that mean values for predictédegaare slightly different from those of collectelues.
Nevertheless the ranking between G2 and G3 bigfistls and Ethanol in terms of contribution to the
climate change (i.e. amount of GHG emissions ethélealong their life cycle) is still the samedepicted

in the econometric analysis. Second, the rangeapiaton is narrower for predicted values than for
collected values, except for the G3 sample. Fumbeg, these meta-models tend to overestimate peedic
values compared to their corresponding collectédesa(53% to 56% of predicted values are overesticha
depending on the samples) as depicted in Figure 6.

Table 8 — Characteristics of collected and predictevalues of thee-sin g CO,eq/MJ (predicted values calculated from (1a)
meta-models)

Samples Whole G3 G2 BtL Ethanol
Collected values

Number of values 533 69 464 143 321
Mean 28.64 58.84 24.15 18.65 26.61
Min -85.00 -85.00 -24.00 -24.00 -23.65
Max 332.20 332.20 85.80 85.68 85.80
NA values higher than -60% 7% 14% 5% 1% 7%
GHG emission threshold

EU values higher than -60% 25% 30% 24% 17% 27%

GHG emission threshold
Predicted values

Number of values 533 68 464 132 209
Mean 28.64 59.97 24.15 19.45 19.7
[Confident Interval] [25.19;32.09] [43.29;76.65] [22.56;25.74] [16.67;22.23] [17.37;22.03]
Min -9.42 -109.25 -15.82 -8.04 -20.86
Max 76.27 230.82 47.91 56.31 47.49
Underestimated values 44% 46% 44% 47% 47%
Overestimated values 56% 54% 56% 53% 53%
Collected values included in 12% 51% 22% 18% 37%
the predicted value ClI

NA values higher than -60% 5% 9% 2% 1% 2%
GHG emission threshold

EU values higher than -60% 7% 28% 22% 8% 1%

GHG emission threshold
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4.3.2 Prediction out of sample

Out of sample prediction enables the building diiga of thee-sfor combinations of variables that do not
necessarily exist in the meta-database. Those vartescalculated from the meta-function obtainedhey
meta-regression method. This harmonization methtmve us to obtain mean values of tlees and
associated confidence intervals (Cl) for each comaiion of statistically significant variables ofnaeta-
model. For instance, using the meta-model for thkoleé' sample presented in column (1aAll), Table 4,
predicted values of the-scan be calculated for G3 biofuel, BtL and Ethandturope and North America.
Table 9 and Table 10 illustrate the procedure. & 8boteports coefficient estimates of the model (DdAs
presented in column (1aAll), Table 4) and the défe values of the variable of this reduced modeaictv
have to be imputed to compute the predicted vadtiise e-sfor G3 biofuel, BtL and Ethanol in Europe and
North America. Table 10 shows the link between ¢hesputed values and the corresponding predicted
values of thee-swhereas Figure 7 offers an alternative view ofl@dl® results.

Table 9 - Benefits Transfer for the "Whole" Sample(1aAll meta-model)

Samples Whole

Model: laAll Imputed Values

Parameter Estimate

Constant 76,27%+* 1 1 1 1 1 1
(13,64)

Technical data

gen_3 (ref for Whole) 0 0 0 0 0 0

etha -41,39%** 0 1 0 0 1 0
(13,14)

btl (ref for G2) -52,12%+* 0 0 1 0 0 1
(13,36)

Typology of the study

zlab_us -24,6%** 0 0 0 1 1 1
(3,97)

zlab_eu (ref) 0 0 0 0 0 0

zlab_other -85,69*** 0 0 0 0 0 0
(15,6)

76,27 34,88 24,15 51,67 10,29 -0,44

TESIED Vs 13.64) (1,75) (1.88) (12,35 (2,98  (3,50)

Table 10 - Harmonizede-s (g CO,eq/MJ) for the "Whole" sample (1aAll meta-model))

Harmonized [ 95% Confidence Interval
e-s Min Max
G3 76,27 49,54 103,00
Europe G2 Ethanol 34,88 31,45 38,31
G2 BtL 24,15 20,46 27,84
G3 51,67 27,47 75,88
North
America G2 Ethanol 10,29 4,45 16,13
G2 BtL -0,44 -7,31 6,42
In sample
predicted Mean 28,64 25,19 32,09
value
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Figure 7 — Predicted values of the effect size fdlne whole sample calculated from meta-model 1aAll

As depicted in the Figure 7, predicted values ofGa¢inissions for advanced biofuels in Europe araysw
higher than those in North America. In addition, Glemissions are lower for BtL than Ethanol, and G3
biofuels always emit more GHG emissions than G2uleis. Those results are in line with the statadtic
description conducted in Section 3.2. Furthermibre predicted value Cls are wider for G3 biofubbt for

G2 biofuels, meaning that the model better estim@2 biofuels GHG emissions than those of G3 blefue

It should be noted that predicted values of GHGssmns for advanced biofuels are always lower than
GHG emissions for the reference fossil fuel evernvbonsidering ClI, except for G3 biofuel in Europe.

The same type of analysis could be conducted fon egeta-model. Out of sample prediction could @lso
used to test the sensitivity of results for quatitie variables. A range of values for quantitatragiables
could be tested by calculating mean predicted galoethee-sand associated Gieteris paribus

For instance, the influence of oil content and algaoductivity is tested for G3 biofuels (FigureaBd
Figure 9), by testing the range of values founthenmeta-database. Results show that both variables a
non-linear effect on LCA GHG emissionseteris paribus Furthermore, variations for high values of the
algae productivity have less effect on tagsthan variations for low values. Moreover, Cls anealler for

oil content and algae productivity values aroun@mealues than for extreme values.
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Figure 9 — Influence of algae productivity on predited values of thee-s for G3 sample (1aG3 meta-model)

The same type of sensitivity analysis is condudtetest the influence of mass yield values of cosioa
process unit on BtL and Ethanol GHG emission valdssdepicted in Figure 10 and Figure 11, massiyiel
value has a non linear effect on LCA GHG emissioh&2 biofuels,ceteris paribus Variations for high
values have less effect on thesthan variations for low values. In addition, Cte amaller for mass vyield
values around mean values than for extreme vahsgsteviously described in the G3 sample.
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5 Concluding remarks and discussion

This article aims at synthesizing the literatureL&fA studies which have estimated GHG emissions of
advanced biofuels. Our literature review showedgh lvariation among the results (Figure 1). Thus o
can wonder) if there is a consensus about GHG emission berfeditn advanced biofuels anyl why there

is so much variation among results. To do so, we leen chosen to apply a spediid methodology (the
"meta-regression anlysis MRA) rather than a more classical narrative literatteeiew approach. It
provides a multivariate statistical analysis of yiwes estimated results to synthesize the available
information. This assessment brings an extensieeview and contributes for a better understandindy®
main factors inducing GHG emission variations. Bing this original quantitative research framewalnks
article attempts to take the analysis of advangefli®l GHG emissions one step further by complement
the qualitative surveys which have already beenighdd [8—13]. We investigate — through an appitcat

the potential forMRA to synthesize LCA literature by highlighting theaim determinants of result
variability in order to perform harmonization.

Our primary purpose was to identify and quantifyichhfactors among) technical data/characteristiag,
author's methodological choices aiigl typology of the study under consideration haveirapact on
variations of the GHG emission estimates. Our tesnlicate a hierarchy between G3 and G2 biofuels:
GHG emissions of G3 biofuels are statistically leigthan those of Ethanol which, in turn, are supen
those of BtL. Moreover, whatever the type of adwahbiofuel considered, North-American estimates are
statistically higher than European estimates. Riiggrauthor methodological choices, we have shdw t
some variables can influence the LCA results, agthe type of LCA approach (A-LC¥s. C-LCA), the
method to account for coproducts and the factloh¢pinto account iLUC. Some technical variablepesar

to have an influence on GHG emission estimatesc€@mmg G2 biofuels, the mass yield has a negaiivk
non-linear effect for both Ethanol and BtL wherdas type of process has a statistically significaiifect
only for BtL. For G3 biofuels, the algae produdiyvand its oil content have systematically a negatind
non-linear effect. Finally, conclusions can be draalso for some variables that have not been itlethtas
variables influencing the final LCA result such #®e type of biomass pretreatment in the Ethanol
conversion process and the use of CCS in the Bthweamwion process. The former is probably not
statistically significant because most of the Etiidachnical data used in the different studiesdeeved
from one single study [92]. The latter is a varsbkpected to have a negative impact in the GHGsam
results but that could not be tested because aséirghtions with the use of CCS fell in the outlieasegory.

The secondary purpose of this study was to adheskdrmonization issue in the field of advanceduaio
GHG emissions by using the techniquebehefits transfer using meta-regression mad®@lsr results may
be summarized as follows. For each type of biofaehean value of life cycle GHG emissions (exprease

g COeq / MJ of biofuel) weighted by the influence of ain drivers and its corresponding Confidence
Interval is provided (Figure 5): about 60.0 (rargginom 43.3 to 76.7) for G3 biofuels; 19.7 (rangingm
17.4 to 22.0) for Ethanol; and 19.5 (ranging fro.71to 22.2) for BtL. Lastly, these values appear
systematically higher for North-American estimatespared to those of Europeteris paribugFigure 7).
Note that this range of values is lower than tresifaeference (about 83.8 in g &4 / MJ). However, only
Ethanol and BtL do comply with the GHG emissionueitbn thresholds defined in both the US and EU
directives.

Some results highlighted in thMRA have revealed some new information not previoaskessed in this
literature such as the existence of some non-liedf@cts regarding technical variables. MoreowWRA
providei) a measure of the meas andii) a measure of the precision of this mean valuenesti as
provided by the corresponding Confidence Intervals.

Systematic reviews of LCA studies have gained @siedue to their potential to clarify the impacfs o
particular products or services, producing moreusbband policy-relevant results [14]. Most of the
published so-called LCA meta-analyses rely on afloaization” procedure adjusting other study estma
based on "more consistent methods and assumptj@bk” These studies typically harmonize technical
parameters and methodological choices such assysiandaries, allocation procedures, impact caticua
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method, etc. [17,33,82,86,97-100]. All the citaadgts are able to reduce variability in calculatetcomes
representing a useful starting point for more medstimates of LCA results. However, this doesmedn
that this "harmonization" procedure, which we vadlll "normalization”, produces more accurate result
since the "more consistent methods and assumptappled are subjective depending on an authorcelsoi
(different authors can consider different methaus assumptions to be more consistent).

The MA approach applied in this study is quite differant follows the traditional practice in biomedical
sciences or economics, based on in-depth applicafistatistical methods and analysis. To our keolgé,
Bureauet al.[34] are the only authors to use this type of apph in LCA systematic reviews. In the same
way as their study, our results show that this wadlogy can be consistently applied for the idésdtion

of parameters that influence a biofuel LCA resMibreover, we have gone further by proposing a ntetho
predict LCA results using a meta-model. This carsé&en as a harmonization method alternative toriee
applied currently in LCAneta-analysig"normalization™).

Our meta-model is obtained from a meta-regressial) therefore, it contains the parameters that were
statistically proven to influence LCA results igi@en sample. Our results show that, with this apph, we
can provide more than a mean value and an intdrigueange for the e-s as done in the "normalizétio
studies. We can calculate a real confidence inkéovaur predictions.

Among the LCA meta-analysisreviewed, the only meta-model built using regm@sstechniques, is
attempted in a work from Padey al. [101]. However, their wind turbine LCA meta-modelbased on a
limited number of parameters (lifetime and wind eeand their regression method cannot account for
gualitative parameters (dummy variables used mshidy). Therefore, we observe that this is @ fighere
significant progress can be made and we would rezamd that the LCA community should work more
closely with the Econometrics community so thatenstudies of this type could be conducted.

However, there are many limitations typically asated withMA. In the construction of the database, for
example, there is always some exogenous informétianhas to be provided. Even if we avoid it aximu
as possible, in some cases it is necessary. Thigehad especially in the calculation of the e-srevlibe
data required for the conversion of units (LHV, sig) motor performance, etc.) was not always [edi
by the study in question.

Moreover, there is a compromise that has to be rhatigeen the number of studies that pass the sogeen
process and the number of independent variabléstbaised in the description of an observatiora NbA
database, all of the observations in a given sarhphe to be described with the same amount of
independent variables. Theoretically, all the patems that potentially influence thes have to be
included. However, in LCA, the results are affectgdhundreds of inputs and methodological choices,
making it impossible to fully explain all the reubf a big number of observations given the hegieneity

in LCA reporting. It was our judgement and expetenn conducting LCA studies, but also previous
narrative surveys, that determined which explaryatariables should be included in the database.

Finally, there may be some limitations regarding #tatistical population of thelA sample. Heath and
Mann [15] highlight the fact thatlA cannot make up for a lack of studies on a certaglmnology or
methodological issue. In our case, for exampleettaee only 3 observations for BtL including CCSts
production pathway and these were coincidentlyatsed from the meta-regression sample as outliers.
Therefore, no conclusions could be drawn from tiachinological parameter. Another example is théeidn
number of consequential LCAs, also limiting the dasions we can reach concerning this methodolbgica
choice.

On our view,MA appear thus more as a complementary methodolagy &m alternative one to more
classical narrative surveys.
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Appendices

Appendix A. Technical description of advanced biofuels

Figure A.1 represents the main steps involved éenpifoduction of second and third generation biaf(&2
and G3 biofuels respectively) discussed in thisepamd the following text contain a brief descoptiof
their production processes.

Cultivation ->| Pre-treatment |->| Hydrolysis |->| Fermentation H Purification |_> Lignocellulosic

or collection ethanol ond
generation

Cultivation ->| Pre-treatment |->| Gasification |->| Gas cleaning |-> Fischer- »i Synthetic diesel

or collection Tropsch from biomass

microalgae generation

Cultivation H Harvesting H Oil extraction |->| Transesterification |—> Biodiesel from } 3

Figure A.1 — Main steps in the production of advaned biofuels

Second generation Ethanol is obtained from thehaogcal conversion of annual crop residues (e.g1 co
stover) and perennial crops (e.g. miscanthus). éirgatment of the biomass is necessary to sepidmate
cellulose from hemicellulose and lignin. Once tle#utose is accessible, enzymes are used to hyakoly
these molecules, transforming them into sugarsdiatbe fermented. The product of fermentation seed
be distilled and dehydrated for obtaining pure Et1§92,102].

Synthetic diesel from biomass is also known as Blomass to Liquids) or biomass FT-diesel. It is
produced by the thermochemical conversion of foresidues, herbaceous energy crops (e.g. switd)gras
and woody biomass (e.g. poplar), which is a pramgisecond generation pathway. A pretreatment of the
biomass is necessary so that it can be loadedhetgasifier. In the gasifier, the biomass suftethermal
treatment into what is known as "syngas", compasathly of H, and CO. Impurities are removed from the
"syngas" during a gas cleaning step, due to thie $égsibility of the Fischer-Tropsch (FT) reacteaalyst.
The synthetic diesel is obtained after the upgmadimydrocracking) of the products from the FT unit
[103,104].

Biodiesel can be produced from conventional traesiésation of oil extracted from microalgae thetve a
higher theoretical productivity per hectare thamwamntional vegetable oil crops (e.g. soybeans, palm
Microalgae can be cultivated in open ponds or phioteactors (PBR) and the technologies for hamgsti
drying and extracting oil still require considemlpésearch effort. Various pathways are studieatdier to
reduce costs and energy consumption in the pramugtiocess. The use of power plant flue gas asa CO
source for growing algae or wastewater as a soofaautrients are potential options for this biogles
pathway [95,105].

Studies about hydrotreated vegetable oil (HVO) frdme hydrogenation of microalgae oil were also
included in this literature review. It has diffetesharacteristics than biodiesel but the most irtgmdrlife
cycle steps involving microalgae growth, harvesimgl oil extraction are the same. HVO, as well 2s B
are being studied as renewable alternatives nbtgusoad transportation but also for the aviatiotustry.
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Appendix B. Complements on the database

Table B.1 - List of selected LCA studies assessi@HG emissions of G2 and G3 biofuels

Name Authors Title Year
Bai et al. (2010) Bai Y, Luo L, van der Voet E Life cycle assessment of switchgrass derived ethanol as transport fuel 2010
Batan et al. (2010) Batan L, Quinn J, Willson B, Bradley T Net energy and greenhouse emission evaluation of biodiesel derived from microalgae 2010
Campbell et al. (2010) Campbell PK, Beer T, Batten D Life cycle assessment of biodiesel production from microalgae in ponds (submitted) 2010
Cherubini et al. (2011) Cherubini F, Hammer Stromman A, Ulgiati S rf(lzzzr;csetﬁ;);allocanon methods on the environmental performance of biorefinery products - 2011
Choudhury et al, (2002) Choudhury R, Weber T, Schindler J, Weindorf Well-to—yvheel analysis of energy use and greenhouse gas emissions of advanced 2002
W, Wurster R fuel/vehicle systems
Delucchi (2006) Delucchi M Life Cycle Analysis of Biofuels 2006
Dussault et al. (2010) 3;:;23:3\;”&: Bradt L, Ponce-Ortega J.M, El- Incorporation of process integration into life cycle analysis for the production of biofuels 2010
Elsayed et al. (2003) Elsayed M.A, Matthews R, Mortimer N.D Carbon and Energy Balances for a Range of Biofuels Options 2003
Fazio & Monti (2011) Fazio S, Monti A Life cycle assessment of different bioenergy production systems including perennial and 2011
annual crops
Gonzales-Garcia et al. (2009a) Gonzales Garcia S, Luo L, Moreira T, FeijooG, !_lfe cyple asse§sment of flax shives derived second generation ethanol fueled automobiles 2009
Huppes G in Spain (submitted)
Gonzales-Garcia et al. (2009b) Gpnzales-Garua S,A Gasol CM Gabarrelle X, Enwropmental profile of ethanol from poplar biomass as transport fuel in southern Europe 2009
Rieradevall J, Moreira T, Feijoo G (submitted)
Gonzalez-Garcia et al. (2009¢) Gonzalez-Garcia S, Moreira M.T, Feijoo G Enwronmentlal performance of lignocellulosic bioethanol production from Alfalfa 2009
stems(submitted)
Groode et al. (2007) Groode T.A, Heywood J.B Ethanol a look ahead 2007
Haase et al. (2009) Haase M, Skott S, Frohling M Ecological evaluation of selected_ 1st and 2nd generation biofuels- FT fuel from wood and 2009
ethanol from sugar beets (submitted)
Hoefnagels et al. (2010) Hoefnagels R, Smeet E, Faaij A Greenhouse gas footprints of different biofuel production systems 2010
Hsu DD, Inman D, Heath G, Wolfrum Ej, Life Cycle Environmental Impacts of Selected U.S. Ethanol Productionand Use Pathways in
Hsu et al. (2010) 2010
Mann MK, Aden A 2022
JEC (2007) JEC - Joint Research Centre-EUCAR- Well to Wheels analysis of future automotive fuels and powertrains in the European 2007
CONCAWE collaboration Context (version2c)
JEC (2011) JEC - Joint Research Centre-EUCAR- Well to Wheels analysis of future automotive fuels and powertrains in the European 2011
CONCAWE collaboration Context (version3c)
Jungbluth et al. (2007) Jungbluth N, Frischtknecht R, Emmenegger  Life cycle assessment of BTL-fuel production: life cycle impact assessment and 2007
9 i MF, Steiner R, Tuschshmid M interpretation. Renewable Fuels for Advanced Powertrains (RENEW) Project
Jungbluth et al. (2008) Jungbluth N Busser S, Frischknecht R, Life cycle assessment of biomass-to-liquid fuels 2008
Tuchschmid M
Kaufman et al. (2010) Kayfman A.S, Meier PJ, Sinistore JC, Applymg life —cylc_le assgssment to low carbon fuel gtandards -How allocation choices 2010
Reinemann DJ influence carbon intensity for renewable transportation fuels
Koponen et al. (2009) Koponen K, Soimakallio S, Sipila E Assessing greenhouse gas emissions of waste-derived ethanol in accordance with the EU 2009
RED methodology for biofuels
Lardon et al. (2009) Lardon L, Helias A, Sialve B, Steyer JP, Life cycle assessment of biodiesel from microalgae 2009
Bernard O
Luo et al. (2009) Luo L, van der Voet E, Huppes G Allocation issues in LCA methodology : a case study of corn-stover based fuel ethanol 2009
McKechnie et al. (2011) McKechnie J, Zhang Y, leno A, Saville B, Impact of co-location, col-pqrducnorj, and process energy source on life cycle energy use 2011
Sleep S, Turner M, Pontius R, MacLean H.L  and greenhouse gas emissions of lignocellulosic ethanol
Mehlin et al. (2003) \I\;I::gen E;A Zauner M, Gihnemann A, Aoki R, Renewable Fuels for Cross Border Transportation 2003
Mu et al. (2010) Mu D, Seager T, Rao P.S Comparative life cyc_le assessm(_ant of lignocellulosic ethanol production : Biochemical 2010
versus thermochemical conversion
Mullins et al. (2010) Mullins K.A, Griffin W.M, Matthews H.S P_ollcy |mpI|cat|pns of uncertainty in modeled life cycle greenhouse gas emissions of 2010
biofuels (submitted)
RED (2009) European Parlement Directive 2909/28/EC of the European Parliament and of the Council of 23 April 2009 On 2009
the promotion of the use of energy from renewable sources
RFS2 (2010) ngﬁgysmes Environmental Protection Renewable fuel standard program (RFS2) regulatory impact analysis 2010
Sander et al. (2010) Sander K, Murthy GS Life cycle analysis of algae biodiesel 2010
. Schmitt E, Bura R, Gustafson R, Cooper J, Converting lignocellulosic solid waste into ethanol for the State of Washington: An
Schmitt et al. (2011) R . - . . ] h 2011
Vajzovic A investigation of treatment technologies and environmental impacts (submitted)
Sheehan J, Aden A, Paustian K, Killian K, ) .
Sheehan et al. (2004) Brenner J. Walsh M. Nelson R Energy and environmental aspects of using corn stover for fuel ethanol 2004
Spatari et al. (2005) Spatari S, Zhang Y, MacLean H.L Life cycle assesment of switchgrass and corn-stover derived ethanol-fueled automobiles 2005
Spatari et al. (2009) Spatari S, Bagley DM, MacLean HL Life cy_cle evaluation of emerging lignocellulosic ethanol conversion technologies 2009
(submitted)
Spatari et al. (2010) Spatari S, MacLean H.L Characterizing models uncertainties in the life cycle of lignocellulose-based ethanol fuels 2010
Stephenson et al. (2010a) ?ttsaphenson AL, Dupree P, Scott S.A, Dennis The environmental and economic sustainability of potential bioethanol from willow in the UK 2010
Stephenson A.L, Kazamia E, Dennis J.S, Life cycle assesment of potential algal biodiesel production in the United Kingdom : A
Stephenson et al. (2010b) Howe C.J, Scott S.A, Smith A.G comparison of raceways and air-lift tubular bioreactors 2010
Stichnothe et al. (2009) Stichnothe H, Azapagic A Bioethanol from waste: life cycle estimation of the greehouse gas saving potential 2009
Stratton et al. (2010) Stratton RW, Wong HM, Hilman JI Life Cycle Greenhouse Gas emissions from alternative jet fuels 2010
van Viiet et al. (2009) van Vliet O.P.R, Faaij A.P.C, Turkenburg W.C F|scher-Trqpsch disel production in a well-to wheel perspective : a carbon, energy flow and 2009
cost analysis
Vera-Morales et al. (2009) Vera-Morales M, Schéfer A Well-to-wheels analysis of future automotive fuels and powertrains in the european context 2009
Methods of dealing with co-products of biofuels in life cycle analysis and consequent results
Wang et al. (2010) Wang M, Huo H, Arora S within the U.S context (submitted) 2010
Wang et al. (2011) Wang MQ Han J, Haq Z, Tyner W.E, Wu M, _Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology 2011
Elgowainy A improvements and land use changes
Whittaker et al. (2011) Whittaker C, McManus M.C, Hammond G.P ﬁ;&iﬁzz;l:)s;egsas reporting for biofuels : a comparison between RED, RFTO and PAS2050 2011
Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles
Wau et al. (2005) Wu M, Wu Y, Wang M Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America’s 2005
Energy Future (RBAEF) Project
Xie et al. (2011) Xie X, Wang M, Han J Assessment of Fuel-Cycle Energy Use and Greenhouse Gas Emissions for Fischer- 2011

Tropsch Diesel from Coal and Cellulosic Biomass
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Table B.2 - Description of variables included in tle database

Variables Family Description of variables Variables Type of variable Unit
Technical data
Type of biofuel Second generation biofuel gen_2 Binary (=1 if 'true’; O else)
Third generation biofuel gen_3 Binary (=1 if 'true'; 0 else)
Ethanol etha Binary (=1 if 'true’; O else)
Biomass to Liquid (BtL) btl Binary (=1 if 'true’; O else)
Fatty Acid Methyl Ester (FAME) fame Binary (=1 if 'true'; 0 else)
Hydrotreated Vegetable Oil (HVO) hvo Binary (=1 if 'true’; 0 else)
Type of biomass  Microalgae mat_algae Binary (=1 if 'true'; 0 else)
feedstock Agricultural residues mat_agrires Binary (=1 if 'true'; 0 else)
Forestry residues mat_for Binary (=1 if 'true’; O else)
Energy crop mat_enercult Binary (=1 if 'true'; 0 else)
Farmed wood mat_farmwood Binary (=1 if 'true’; O else)
Others mat_other Binary (=1 if 'true’; O else)
Cultivated feedstock mat_cult Binary (=1 if 'Cultivated
feedstock'’; O if 'Waste feedstock’)
Type of coproducts Existence of coproduct coprod Binary (=1 if 'true’; O else)
Glycerin as coproduct cop_gly Binary (=1 if 'true'; 0 else)
Electricity as coproduct cop_elec Binary (=1 if 'true'; O else)
Heat as coproduct cop_heat Binary (=1 if 'true’; O else)
Algal meal as coproduct cop_algmeal Binary (=1 if 'true'; 0 else)
Biogas as coproduct cop_biog Binary (=1 if 'true’; O else)
Other coproduct cop_other Binary (=1 if 'true’; O else)
Other coproduct than elelctricity cop_otherelec Binary (=1 if 'true'; 0 else)
Number of coproducts coprod_num Binary (=1 if 'true’; 0 else)
Type of Mass yield provided mass_yield_exist Binary (=1 if 'true'; 0 else)
technologies and  Value of mass yield g2_mass_yield Quantitative % mass
associated yields  steam explosion as biomass pretreatment for eth_expl Binary (=1 if 'true’; O else)
Ethanol technology
Dilute sulfuric acid as biomass pretreatment eth_ac Binary (=1 if 'true'; 0 else)
for Ethanol technology
Ammonia fibre explosion as biomass eth_amm Binary (=1 if 'true'; 0 else)
pretreatment for Ethanol technology
Other processes as biomass pretreatment for eth_other Binary (=1 if 'true’; O else)
Ethanol technology
Torrefaction as biomass pretreatment for BtL btl_pre_torr Binary (=1 if 'true’; O else)
technology
Pyrolyse as biomass pretreatment for BtL btl_pre_pyro Binary (=1 if 'true’; O else)
technology
No biomass pretreatment for BtL technology btl_pre_none Binary (=1 if 'true'; 0 else)
Autothermic BtL technology btl_pro_autoth Binary (=1 if 'true’; O else)
Allothermic BtL technology with natural gas  btl_pro_alng Binary (=1 if 'true’; O else)
as fuel
Allothermic BtL technology with imported btl_pro_alelec Binary (=1 if 'true'; 0 else)
electricity as fuel
Allothermic BtL technology with renewable btl_pro_alrenew Binary (=1 if 'true'; 0 else)
energy as fuel
BtL technology with tail gas recycled btl_gasrecycl Binary (=1 if 'true'; 0 else)
BtL technology with Carbon Capture and btl_ccs Binary (=1 if 'true’; O else)
Storage
Microalgae productivity for G3 biofuel g3_productivity Quantitative g/(m?.day)
Qil content of microalage for G3 biofuel g3_oil Quantitative % dry mass
Open Pond for microalgae cultivation for G3 g3_Oppond Binary (=1 if 'open pound’; O if
biofuel "photobioreactor or hybrid")
Geographical North America zloc_us Binary (=1 if 'true’; O else)
location of the case Europe zloc_eu Binary (=1 if 'true’; 0 else)
study Other zloc_other Binary (=1 if 'true’; 0 else)
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Methodological choices

Type of LCA Attributionnal LCA Ica_att Binary (=1 if 'true'; 0 else)

approach Consequential LCA Ica_cons Binary (=1 if 'true’; O else)

System boundaries Well To Tank wit Binary (=1 if 'true’; O else)
Well To Wheel wtw Binary (=1 if 'true'; 0 else)
Infrastructures taken into account in infrastruct Binary (=1 if 'true’; O else)
boundaries

Method for taking
into account
coproducts

Energetic allocation
Mass allocation
Economic allocation
Exergetic allocation
Allocation

System expansion
Hybrid

copval_alloc_ener
copval_alloc_mass
copval_alloc_markval
copval_alloc_exerg
copval_alloc
copval_systexp
copval_hyb

Binary (=1 if 'true’; O else)
Binary (=1 if 'true'; 0 else)
Binary (=1 if 'true’; O else)
Binary (=1 if 'true'; O else)
Binary (=1 if 'true'; 0 else)
Binary (=1 if 'true’; O else)
Binary (=1 if 'true'; 0 else)

Carbon neutral Carbon neutral hypotesis for WTW G3

biofuel studies

witw*g3_carbneut

Binary (=1 if 'true’; O else)

Characterization =~ Number of greenhouse gases taken into gas_num Binary (=1 if 'number >3'; 0 else)

method for impact account

assessment

Method for taking  Use of IPCC method ass_ipcc Binary (=1 if 'true’; O else)

into account N20

emission from N

input

Method for taking LUC taken into account luc Binary (=1 if 'true’; O else)

into account Land  Direct LUC taken into account luc_dir Binary (=1 if 'true’; 0 else)

Use Change Indirect LUC taken into account luc_indir Binary (=1 if 'true’; 0 else)

Method for taking No method for taking into account uncer_ref Binary (=1 if 'true’; O else)

into account uncertainties

uncertainties Use of Monte Carlo analysis uncer_MC Binary (=1 if 'true'; 0 else)
Use of sensitivity analysis uncer_SA Binary (=1 if 'true'; 0 else)
Use of a method for taking into account uncer_MCSA Binary (=1 if 'true’; O else)
uncertainties

Number and type  Net Energy Value assessed impcat_nev Binary (=1 if 'true'; 0 else)

of environmental  Non Renewable Energy Consumption impcat_nrc Binary (=1 if 'true'; 0 else)

impact indicator
assessed in the

assessed
Energetic indicator assessed

impcat_nrcnev

Binary (=1 if 'true’; O else)

study Global Warming indicator assessed impcat_gwp Binary (=1 if 'true'; 0 else)
Other environmental indicator assessed impcat_other Binary (=1 if 'true'; 0 else)
Number of environmental indicator assessed impcat_all Quantitative number
Typology of the study
Type of study Peer review literature lit_pr Binary (=1 if 'true'; 0 else)
Official report lit_or Binary (=1 if 'true’; O else)
Directive or Standard lit_dir Binary (=1 if 'true'; 0 else)
Official report or directive/standard lit_ordir Binary (=1 if 'true’; O else)
Working paper lit_wp Binary (=1 if 'true’; 0 else)
Year of publication Year of publication year Quantitative year
Year of publication after 2007 year_07 Binary (=1 if 'true’; O else)
Year of publication after 2009 year_09 Binary (=1 if 'true'; O else)
Year of publication after 2010 year_10 Binary (=1 if 'true'; O else)
Geographical North America zlab_us Binary (=1 if 'true’; O else)
location of authors Europe zlab_eu Binary (=1 if 'true’; 0 else)
Other zlab_other Binary (=1 if 'true’; O else)

Table B.3 - Share of studies and observations fohé¢ geographical location of the authors and of asseed pathways

Geographical location of the authors Geographical location of assessed
pathways
North Europe Other North Europe Other
Weighted by America America
Studies (47) 45% 53% 2% - - -
Observations (593) 32% 67% 1% 34% 64% 2%
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Table B.4 — Descriptive statistics for the effectize and variable_s of the original Whole sample

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 593 34.45 89.34 -142.18 1377.90
es_min 593 -11.25 70.81 -352.81 881.44
es_max 593 80.18 155.52 -127.01 1874.37
es_var 593 2264.65 9868.76 0.00 64159.87
es et 593 23.37 41.49 0.03 253.30
Technical data
gen_2 593 0.87 0.34 0 1
gen_3 593 0.13 0.34 0 1
etha 593 0.61 0.49 0 1
btl 593 0.26 0.44 0 1
fame 593 0.11 0.31 0 1
hvo 593 0.03 0.16 0 1
mat_algae 593 0.13 0.34 0 1
mat_agrires 593 0.22 0.41 0 1
mat_for 593 0.05 0.22 0 1
mat_enercult 593 0.28 0.45 0 1
mat_farmwood 593 0.10 0.30 0 1
mat_other 593 0.23 0.42 0 1
mat_cult 593 0.38 0.49 0 1
coprod 593 0.91 0.29 0 1
cop_gly 593 0.09 0.29 0 1
cop_elec 593 0.63 0.48 0 1
cop_heat 593 0.12 0.32 0 1
cop_algmeal 593 0.10 0.30 0 1
cop_biog 593 0.18 0.39 0 1
cop_other 593 0.25 0.54 0 2
cop_otherelec 593 0.48 0.50 0 1
coprod_num 593 1.36 1.00 0 5
mass_yield_exist 593 0.64 0.48 0 1
g2_mass_yield 378 0.22 0.07 0.07 0.50
eth_expl 361 0.08 0.28 0 1
eth_ac 361 0.83 0.37 0 1
eth_amm 361 0.08 0.28 0 1
eth_other 361 0.00 0.00 0 0
btl_pre_torr 153 0.07 0.25 0 1
btl_pre_pyro 153 0.05 0.21 0 1
btl_pre_none 153 0.89 0.32 0 1
btl_pro_autoth 153 0.86 0.35 0 1
btl_pro_alng 153 0.08 0.27 0 1
btl_pro_alelec 153 0.03 0.18 0 1
btl_pro_alrenew 153 0.03 0.16 0 1
btl_gasrecycl 153 0.01 0.11 0 1
btl_ccs 153 0.02 0.14 0 1
g3_productivity 76 30.09 18.86 6.85 150.00
g3_oil 77 0.41 0.11 0.15 0.70
g3_Oppond 77 0.61 0.49 0 1
zloc_us 593 0.34 0.47 0 1
zloc_eu 593 0.64 0.48 0 1
zloc_other 593 0.02 0.15 0 1
Methodological choices
Ica_att 593 0.97 0.17 0 1
Ica_cons 593 0.03 0.17 0 1
wit 593 0.38 0.49 0 1
wtw 593 0.62 0.49 0 1
infrastruct 593 0.44 0.50 0 1
copval_alloc_ener 593 0.26 0.44 0 1
copval_alloc_mass 593 0.04 0.20 0 1
copval_alloc_markval 593 0.12 0.32 0 1
copval_alloc_exerg 593 0.01 0.07 0 1
copval_alloc 593 0.42 0.49 0 1
copval_systexp 593 0.55 0.50 0 1
copval_hyb 593 0.07 0.26 0 1
wtw*g3_carbneut 77 0.00 0.00 0 0
gas_num 394 0.26 0.44 0 1
ass_ipcc 573 0.37 0.48 0 1
luc 593 0.51 0.50 0 1
luc_dir 593 0.51 0.50 0 1
luc_indir 593 0.03 0.18 0 1
uncer_ref 593 0.57 0.50 0 1
uncer_MC 593 0.10 0.30 0 1
uncer_SA 593 0.38 0.49 0 1
uncer_MCSA 593 0.48 0.50 0 1
impcat_nev 593 0.31 0.46 0 1
impcat_nrc 593 0.41 0.49 0 1
impcat_nrcnev 593 0.50 0.50 0 1
impcat_gwp 593 1.00 0.00 1 1
impcat_other 593 1.09 2.28 0 9
impcat_all 593 2.81 2.43 1 12
Typology of the study
lit_pr 593 0.63 0.48 0 1
lit_or 593 0.09 0.29 0 1
lit_dir 593 0.03 0.17 0 1
lit_ordir 593 0.12 0.32 0 1
lit_wp 593 0.25 0.44 0 1
year 593 2009.38 1.31 2002 2011
year_07 593 0.97 0.17 0 1
year_09 593 0.90 0.30 0 1
year_10 593 0.56 0.50 0 1
zlab_us 593 0.32 0.47 0 1
zlab_eu 593 0.67 0.47 0 1
zlab_other 593 0.01 0.10 0 1




Table B.5 — Descriptive statistics for the effectize and variables of the original G3 sample

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 7 88.87 211.85 -96.47 1377.90
es_min 77 -46.68 146.41 -352.81 881.44
es_max 7 224.42 351.73 -7.55 1874.37
es_var 7 11898.53 23739.99 265.09 64159.87
es_et 77 69.16 84.91 16.28 253.30
Technical data
gen_2 77 0.00 0.00 0 0
gen_3 77 1.00 0.00 1 1
etha 77 0.00 0.00 0 0
btl 7 0.00 0.00 0 0
fame 77 0.82 0.39 0 1
hvo 7 0.19 0.40 0 1
mat_algae 77 1.00 0.00 1 1
mat_agrires 77 0.00 0.00 0 0
mat_for 77 0.00 0.00 0 0
mat_enercult 77 0.00 0.00 0 0
mat_farmwood 77 0.00 0.00 0 0
mat_other 77 0.00 0.00 0 0
mat_cult 77 0.00 0.00 0 0
coprod 77 1.00 0.00 1 1
cop_gly 77 0.71 0.45 0 1
cop_elec 77 0.27 0.45 0 1
cop_heat 77 0.40 0.49 0 1
cop_algmeal 77 0.79 0.41 0 1
cop_bhiog 77 0.00 0.00 0 0
cop_other 77 0.95 0.93 0 2
cop_otherelec 77 0.87 0.34 0 1
coprod_num 77 2.99 1.71 1 5
mass_yield_exist 77 0.05 0.22 0 1
g3_productivity 76 30.09 18.86 6.85 150.00
g3_oil 7 0.41 0.11 0.15 0.70
g3_Oppond 77 0.61 0.49 0 1
zloc_us 77 0.42 0.50 0 1
zloc_eu 77 0.51 0.50 0 1
zloc_other 77 0.08 0.27 0 1
Methodological choices
Ica_att 77 0.92 0.27 0 1
Ica_cons 77 0.08 0.27 0 1
wit 7 0.65 0.48 0 1
witw 7 0.35 0.48 0 1
infrastruct 77 0.51 0.50 0 1
copval_alloc_ener 77 0.08 0.27 0 1
copval_alloc_mass 77 0.00 0.00 0 0
copval_alloc_markval 77 0.03 0.16 0 1
copval_alloc_exerg 77 0.00 0.00 0 0
copval_alloc 77 0.10 0.31 0 1
copval_systexp 77 0.90 0.31 0 1
copval_hyb 77 0.55 0.50 0 1
wtw*g3_carbneut 77 0.00 0.00 0 0
gas_num 77 0.45 0.50 0 1
ass_ipcc 77 0.48 0.50 0 1
luc 7 0.08 0.27 0 1
luc_dir 77 0.08 0.27 0 1
luc_indir 77 0.08 0.27 0 1
uncer_ref 77 0.39 0.49 0 1
uncer_MC 77 0.00 0.00 0 0
uncer_SA 77 0.61 0.49 0 1
uncer_MCSA 77 0.61 0.49 0 1
impcat_nev 77 0.30 0.46 0 1
impcat_nrc 77 0.40 0.49 0 1
impcat_nrcnev 77 0.70 0.46 0 1
impcat_gwp 77 1.00 0.00 1 1
impcat_other 77 0.66 1.13 0 5
impcat all 77 2.36 1.38 1 7
Typology of the study
lit_pr 77 0.73 0.45 0 1
lit_or 7 0.00 0.00 0 0
lit_dir 77 0.08 0.27 0 1
lit_ordir 7 0.08 0.27 0 1
lit_wp 77 0.19 0.40 0 1
year 7 2009.88 0.32 2009 2010
year_07 77 1.00 0.00 1 1
year_09 77 1.00 0.00 1 1
year_10 77 0.88 0.32 0 1
zlab_us 77 0.42 0.50 0 1
zlab_eu 77 0.51 0.50 0 1
zlab_other 77 0.08 0.27 0 1




Table B.6 — Descriptive statistics for the effectize and variables of the original G2 sample

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 516 26.33 45.20 -142.18 518.40
es_min 516 -5.96 48.83 -307.59 195.45
es_max 516 58.65 77.27 -127.01 841.35
es_var 516 827.04 3582.78 0.00 27149.13
es_et 516 16.54 23.55 0.03 164.77
Technical data
gen_2 516 1.00 0.00 1 1
gen_3 516 0.00 0.00 0 0
etha 516 0.70 0.46 0 1
btl 516 0.30 0.46 0 1
fame 516 0.00 0.00 0 0
hvo 516 0.00 0.00 0 0
mat_algae 516 0.00 0.00 0 0
mat_agrires 516 0.25 0.43 0 1
mat_for 516 0.06 0.23 0 1
mat_enercult 516 0.32 0.47 0 1
mat_farmwood 516 0.11 0.31 0 1
mat_other 516 0.26 0.44 0 1
mat_cult 516 0.43 0.50 0 1
coprod 516 0.89 0.31 0 1
cop_gly 516 0.00 0.00 0 0
cop_elec 516 0.69 0.46 0 1
cop_heat 516 0.08 0.27 0 1
cop_algmeal 516 0.00 0.00 0 0
cop_biog 516 0.21 0.41 0 1
cop_other 516 0.15 0.35 0 1
cop_otherelec 516 0.42 0.49 0 1
coprod_num 516 112 0.52 0 3
mass_yield_exist 516 0.73 0.44 0 1
g2_mass_yield 378 0.22 0.07 0.07 0.50
eth_expl 361 0.08 0.28 0 1
eth_ac 361 0.83 0.37 0 1
eth_amm 361 0.08 0.28 0 1
eth_other 361 0.00 0.00 0 0
btl_pre_torr 153 0.07 0.25 0 1
btl_pre_pyro 153 0.05 0.21 0 1
btl_pre_none 153 0.89 0.32 0 1
btl_pro_autoth 153 0.86 0.35 0 1
btl_pro_alng 153 0.08 0.27 0 1
btl_pro_alelec 153 0.03 0.18 0 1
btl_pro_alrenew 153 0.03 0.16 0 1
btl_gasrecycl 153 0.01 0.11 0 1
btl_ccs 153 0.02 0.14 0 1
zloc_us 516 0.33 0.47 0 1
Zloc_eu 516 0.66 0.48 0 1
zloc_other 516 0.02 0.12 0 1
Methodological choices
Ica_att 516 0.98 0.14 0 1
Ica_cons 516 0.02 0.14 0 1
wit 516 0.34 0.47 0 1
wtw 516 0.66 0.47 0 1
infrastruct 516 0.43 0.50 0 1
copval_alloc_ener 516 0.28 0.45 0 1
copval_alloc_mass 516 0.05 0.21 0 1
copval_alloc_markval 516 0.13 0.34 0 1
copval_alloc_exerg 516 0.01 0.08 0 1
copval_alloc 516 0.47 0.50 0 1
copval_systexp 516 0.50 0.50 0 1
copval_hyb 516 0.00 0.04 0 1
gas_num 317 0.21 0.41 0 1
ass_ipcc 496 0.35 0.48 0 1
luc 516 0.58 0.49 0 1
luc_dir 516 0.58 0.49 0 1
luc_indir 516 0.03 0.16 0 1
uncer_ref 516 0.60 0.49 0 1
uncer_MC 516 0.11 0.32 0 1
uncer_SA 516 0.34 0.48 0 1
uncer_MCSA 516 0.46 0.50 0 1
impcat_nev 516 0.31 0.46 0 1
impcat_nrc 516 0.41 0.49 0 1
impcat_nrcnev 516 0.47 0.50 0 1
impcat_gwp 516 1.00 0.00 1 1
impcat_other 516 1.16 2.40 0 9
impcat_all 516 2.87 2.55 1 12
Typology of the study
lit_pr 516 0.61 0.49 0 1
lit_or 516 0.10 0.30 0 1
lit_dir 516 0.02 0.14 0 1
lit_ordir 516 0.12 0.33 0 1
lit_wp 516 0.26 0.44 0 1
year 516 2009.30 1.38 2002 2011
year_07 516 0.97 0.18 0 1
year_09 516 0.89 0.32 0 1
year_10 516 0.51 0.50 0 1
zlab_us 516 0.31 0.46 0 1
zlab_eu 516 0.69 0.46 0 1
zlab_other 516 0.00 0.00 0 0




Table B.7 — Descriptive statistics for the effectize and variables of the original G2-Ethanol samg

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 361 29.45 48.39 -113.60 518.40
es_min 361 -2.17 51.44 -307.59 195.45
es_max 361 61.12 85.31 -49.54 841.35
es_var 361 941.37 4232.25 0.00 27149.13
es et 361 16.19 26.10 0.03 164.77
Technical data
gen_2 361 1.00 0.00 1 1
gen_3 361 0.00 0.00 0 0
etha 361 1.00 0.00 1 1
btl 361 0.00 0.00 0 0
fame 361 0.00 0.00 0 0
hvo 361 0.00 0.00 0 0
mat_algae 361 0.00 0.00 0 0
mat_agrires 361 0.29 0.45 0 1
mat_for 361 0.02 0.13 0 1
mat_enercult 361 0.29 0.45 0 1
mat_farmwood 361 0.10 0.30 0 1
mat_other 361 0.31 0.46 0 1
mat_cult 361 0.39 0.49 0 1
coprod 361 0.89 0.31 0 1
cop_gly 361 0.00 0.00 0 0
cop_elec 361 0.58 0.49 0 1
cop_heat 361 0.02 0.16 0 1
cop_algmeal 361 0.00 0.00 0 0
cop_biog 361 0.30 0.46 0 1
cop_other 361 0.15 0.36 0 1
cop_otherelec 361 0.46 0.50 0 1
coprod_num 361 1.06 0.49 0 3
mass_yield_exist 361 0.66 0.48 0 1
g2_mass_yield 237 0.25 0.05 0.11 0.50
eth_expl 361 0.08 0.28 0 1
eth_ac 361 0.83 0.37 0 1
eth_amm 361 0.08 0.28 0 1
eth_other 361 0.00 0.00 0 0
zloc_us 361 0.37 0.48 0 1
zloc_eu 361 0.61 0.49 0 1
zloc_other 361 0.02 0.15 0 1
Methodological choices
Ica_att 361 0.98 0.14 0 1
Ica_cons 361 0.02 0.14 0 1
wit 361 0.37 0.48 0 1
wtw 361 0.63 0.48 0 1
infrastruct 361 0.45 0.50 0 1
copval_alloc_ener 361 0.34 0.48 0 1
copval_alloc_mass 361 0.04 0.21 0 1
copval_alloc_markval 361 0.07 0.25 0 1
copval_alloc_exerg 361 0.01 0.09 0 1
copval_alloc 361 0.47 0.50 0 1
copval_systexp 361 0.52 0.50 0 1
copval_hyb 361 0.00 0.05 0 1
gas_num 205 0.12 0.33 0 1
ass_ipcc 361 0.35 0.48 0 1
luc 361 0.66 0.48 0 1
luc_dir 361 0.66 0.48 0 1
luc_indir 361 0.03 0.16 0 1
uncer_ref 361 0.54 0.50 0 1
uncer_MC 361 0.13 0.33 0 1
uncer_SA 361 0.38 0.49 0 1
uncer_MCSA 361 0.51 0.50 0 1
impcat_nev 361 0.20 0.40 0 1
impcat_nrc 361 0.34 0.47 0 1
impcat_nrcnev 361 0.37 0.48 0 1
impcat_gwp 361 1.00 0.00 1 1
impcat_other 361 0.89 2.04 0 9
impcat_all 361 2.43 2.11 1 11
Typology of the study
lit_pr 361 0.62 0.49 0 1
lit_or 361 0.03 0.18 0 1
lit_dir 361 0.01 0.12 0 1
lit_ordir 361 0.05 0.21 0 1
lit_wp 361 0.33 0.47 0 1
year 361 2009.42 1.25 2002 2011
year_07 361 0.96 0.19 0 1
year_09 361 0.94 0.23 0 1
year_10 361 0.48 0.50 0 1
zlab_us 361 0.34 0.48 0 1
zlab_eu 361 0.66 0.48 0 1
zlab_other 361 0.00 0.00 0 0




Table B.8 — Descriptive statistics for the effectize and variables of the original G2-BtL sample

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 155 19.04 35.78 -142.18 189.00
es_min 155 -14.77 40.94 -204.37 65.53
es_max 155 52.91 53.94 -127.01 334.35
es_var 155 560.76 975.95 0.21 5499.18
es et 155 17.35 16.17 0.46 74.16
Technical data
gen 2 155 1.00 0.00 1 1
gen_3 155 0.00 0.00 0 0
etha 155 0.00 0.00 0 0
btl 155 1.00 0.00 1 1
fame 155 0.00 0.00 0 0
hvo 155 0.00 0.00 0 0
mat_algae 155 0.00 0.00 0 0
mat_agrires 155 0.16 0.37 0 1
mat_for 155 0.15 0.36 0 1
mat_enercult 155 0.41 0.49 0 1
mat_farmwood 155 0.13 0.34 0 1
mat_other 155 0.15 0.36 0 1
mat_cult 155 0.54 0.50 0 1
coprod 155 0.90 0.31 0 1
cop_gly 155 0.00 0.00 0 0
cop_elec 155 0.93 0.26 0 1
cop_heat 155 0.20 0.40 0 1
cop_algmeal 155 0.00 0.00 0 0
cop_biog 155 0.00 0.00 0 0
cop_other 155 0.13 0.34 0 1
cop_otherelec 155 0.33 0.47 0 1
coprod_num 155 1.26 0.56 0 2
mass_yield_exist 155 0.91 0.29 0 1
g2_mass_yield 141 0.16 0.06 0.07 0.42
btl_pre_torr 153 0.07 0.25 0 1
btl_pre_pyro 153 0.05 0.21 0 1
btl_pre_none 153 0.89 0.32 0 1
btl_pro_autoth 153 0.86 0.35 0 1
btl_pro_alng 153 0.08 0.27 0 1
btl_pro_alelec 153 0.03 0.18 0 1
btl_pro_alrenew 153 0.03 0.16 0 1
btl_gasrecycl 153 0.01 0.11 0 1
btl_ccs 153 0.02 0.14 0 1
zloc_us 155 0.23 0.42 0 1
Zloc_eu 155 0.77 0.42 0 1
zloc_other 155 0.00 0.00 0 0
Methodological choices
Ica_att 155 0.97 0.16 0 1
Ica_cons 155 0.03 0.16 0 1
wit 155 0.27 0.45 0 1
witw 155 0.73 0.45 0 1
infrastruct 155 0.38 0.49 0 1
copval_alloc_ener 155 0.14 0.35 0 1
copval_alloc_mass 155 0.06 0.23 0 1
copval_alloc_markval 155 0.28 0.45 0 1
copval_alloc_exerg 155 0.00 0.00 0 0
copval_alloc 155 0.48 0.50 0 1
copval_systexp 155 0.46 0.50 0 1
copval_hyb 155 0.00 0.00 0 0
gas_num 112 0.38 0.49 0 1
ass_ipcc 135 0.34 0.48 0 1
luc 155 0.39 0.49 0 1
luc_dir 155 0.39 0.49 0 1
luc_indir 155 0.03 0.16 0 1
uncer_ref 155 0.72 0.45 0 1
uncer_MC 155 0.08 0.27 0 1
uncer_SA 155 0.26 0.44 0 1
uncer_MCSA 155 0.34 0.47 0 1
impcat_nev 155 0.56 0.50 0 1
impcat_nrc 155 0.57 0.50 0 1
impcat_nrcnev 155 0.71 0.46 0 1
impcat_gwp 155 1.00 0.00 1 1
impcat_other 155 1.79 2.99 0 9
impcat_all 155 3.92 3.11 1 12
Typology of the study
lit_pr 155 0.59 0.49 0 1
lit_or 155 0.26 0.44 0 1
lit_dir 155 0.04 0.19 0 1
lit_ordir 155 0.30 0.46 0 1
lit_wp 155 0.11 0.31 0 1
year 155 2009.01 1.62 2002 2011
year_07 155 0.97 0.18 0 1
year_09 155 0.75 0.44 0 1
year_10 155 0.56 0.50 0 1
zlab_us 155 0.23 0.42 0 1
zlab_eu 155 0.77 0.42 0 1
zlab_other 155 0.00 0.00 0 0




Appendix C. Complements on results

Table C.1 — Descriptive statistics for the effectize and variables of the econometric Whole sample

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 533 28.64 44.32 -85.00 332.20
es_min 533 -9.66 52.28 -352.81 101.59
es_max 533 66.99 105.24 -19.10 828.67
es_var 533 1666.43 8552.01 0.00 64159.87
es_et 533 19.61 35.84 0.03 253.30
Technical data
gen_2 533 0.87 0.34 0 1
gen_3 533 0.13 0.34 0] 1
etha 533 0.60 0.49 0 1
btl 533 0.27 0.44 0] 1
fame 533 0.10 0.30 o] 1
hvo 533 0.03 0.17 0 1
mat_algae 533 0.13 0.34 0 1
mat_agrires 533 0.20 0.40 0 1
mat_for 533 0.05 0.22 0 1
mat_enercult 533 0.30 0.46 0 1
mat_farmwood 533 0.10 0.30 0 1
mat_other 533 0.23 0.42 0 1
mat_cult 533 0.39 0.49 0 1
coprod 533 0.91 0.29 0 1
cop_gly 533 0.09 0.28 0 1
cop_elec 533 0.65 0.48 0 1
cop_heat 533 0.11 0.32 0 1
cop_algmeal 533 0.10 0.30 0 1
cop_biog 533 0.18 0.38 0 1
cop_other 533 0.24 0.53 0 2
cop_otherelec 533 0.46 0.50 0 1
coprod_num 533 1.35 0.99 0 5
mass_yield_exist 533 0.65 0.48 0 1
g2_mass_yield 341 0.22 0.07 0.07 0.50
eth_expl 321 0.08 0.27 0 1
eth_ac 321 0.83 0.37 o] 1
eth_amm 321 0.09 0.28 0 1
eth_other 321 0.00 0.00 0 0
btl_pre_torr 141 0.06 0.23 0 1
btl_pre_pyro 141 0.04 0.20 0 1
btl_pre_none 141 0.90 0.30 0 1
btl_pro_autoth 141 0.88 0.33 0 1
btl_pro_alng 141 0.09 0.28 0 1
btl_pro_alelec 141 0.01 0.08 0 1
btl_pro_alrenew 141 0.03 0.17 0 1
btl_gasrecycl 141 0.01 0.08 0 1
btl_ccs 141 0.00 0.00 0 0
g3_productivity 68 31.05 19.58 6.85 150.00
g3_oil 69 0.41 0.11 0.15 0.70
g3_Oppond 69 0.68 0.47 0 1
zloc_us 533 0.32 0.47 o] 1
zloc_eu 533 0.65 0.48 0 1
zloc_other 533 0.03 0.16 0 1
Methodological choices
Ica_att 533 0.97 0.18 0 1
Ica_cons 533 0.03 0.18 0 1
wit 533 0.36 0.48 0 1
witw 533 0.64 0.48 0] 1
infrastruct 533 0.42 0.49 0 1
copval_alloc_ener 533 0.27 0.44 0 1
copval_alloc_mass 533 0.05 0.21 0 1
copval_alloc_markval 533 0.10 0.30 0 1
copval_alloc_exerg 533 0.01 0.07 0 1
copval_alloc 533 0.42 0.49 0 1
copval_systexp 533 0.55 0.50 0 1
copval_hyb 533 0.07 0.26 0 1
wtw*g3_carbneut 69 0.00 0.00 0 0
gas_num 349 0.26 0.44 0 1
ass_ipcc 514 0.38 0.49 0 1
luc 533 0.52 0.50 0 1
luc_dir 533 0.52 0.50 0] 1
luc_indir 533 0.04 0.19 0 1
uncer_ref 533 0.58 0.49 0 1
uncer_MC 533 0.10 0.29 0 1
uncer_SA 533 0.37 0.48 0 1
uncer_MCSA 533 0.47 0.50 0 1
impcat_nev 533 0.32 0.47 0 1
impcat_nrc 533 0.43 0.50 0 1
impcat_nrcnev 533 0.51 0.50 0 1
impcat_gwp 533 1.00 0.00 1 1
impcat_other 533 0.99 2.17 0 9
impcat_all 533 2.74 2.35 1 12
Typology of the study
lit_pr 533 0.62 0.49 0 1
lit_or 533 0.09 0.29 0] 1
lit_dir 533 0.03 0.18 0 1
lit_ordir 533 0.12 0.33 o] 1
lit_wp 533 0.26 0.44 0] 1
year 533 2009.39 1.32 2002 2011
year_07 533 0.97 0.18 o] 1
year_09 533 0.90 0.30 0 1
year_10 533 0.58 0.49 o] 1
zlab_us 533 0.32 0.47 o] 1
zlab_eu 533 0.67 0.47 0 1
zlab_other 533 0.01 0.11 0 1




Table C.2 — Descriptive statistics for the effectize and variables of the econometric G3 sample

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 69 58.84 104.99 -85.00 332.20
es_min 69 -58.50 91.73 -352.81 101.59
es_max 69 176.17 243.48 3.92 828.67
es_var 69 9439.33 21386.86 265.09 64159.87
es et 69 59.86 77.08 16.28 253.30
Technical data
gen_2 69 0.00 0.00 0 0
gen_3 69 1.00 0.00 1 1
etha 69 0.00 0.00 0 0
btl 69 0.00 0.00 0 0
fame 69 0.80 0.41 0 1
hvo 69 0.22 0.42 0 1
mat_algae 69 1.00 0.00 1 1
mat_agrires 69 0.00 0.00 0 0
mat_for 69 0.00 0.00 0 0
mat_enercult 69 0.00 0.00 0 0
mat_farmwood 69 0.00 0.00 0 0
mat_other 69 0.00 0.00 0 0
mat_cult 69 0.00 0.00 0 0
coprod 69 1.00 0.00 1 1
cop_gly 69 0.68 0.47 0 1
cop_elec 69 0.30 0.46 0 1
cop_heat 69 0.39 0.49 0 1
cop_algmeal 69 0.77 0.43 0 1
cop_biog 69 0.00 0.00 0 0
cop_other 69 0.94 0.92 0 2
cop_otherelec 69 0.86 0.35 0 1
coprod_num 69 2.93 1.72 1 5
mass_yield_exist 69 0.06 0.24 0 1
g3_productivity 68 31.05 19.58 6.85 150.00
g3_oil 69 0.41 0.11 0.15 0.70
g3_Oppond 69 0.68 0.47 0 1
Zloc_us 69 0.41 0.49 0 1
Zloc_eu 69 0.51 0.50 0 1
zloc_other 69 0.09 0.28 0 1
Methodological choices
Ica_att 69 0.91 0.28 0 1
Ica_cons 69 0.09 0.28 0 1
wit 69 0.61 0.49 0 1
wiw 69 0.39 0.49 0 1
infrastruct 69 0.51 0.50 0 1
copval_alloc_ener 69 0.09 0.28 0 1
copval_alloc_mass 69 0.00 0.00 0 0
copval_alloc_markval 69 0.03 0.17 0 1
copval_alloc_exerg 69 0.00 0.00 0 0
copval_alloc 69 0.12 0.32 0 1
copval_systexp 69 0.88 0.32 0 1
copval_hyb 69 0.55 0.50 0 1
wtw*g3_carbneut 69 0.00 0.00 0 0
gas_num 69 0.45 0.50 0 1
ass_ipcc 69 0.48 0.50 0 1
luc 69 0.09 0.28 0 1
luc_dir 69 0.09 0.28 0 1
luc_indir 69 0.09 0.28 0 1
uncer_ref 69 0.43 0.50 0 1
uncer_MC 69 0.00 0.00 0 0
uncer_SA 69 0.57 0.50 0 1
uncer_MCSA 69 0.57 0.50 0 1
impcat_nev 69 0.28 0.45 0 1
impcat_nrc 69 0.39 0.49 0 1
impcat_nrcnev 69 0.67 0.47 0 1
impcat_gwp 69 1.00 0.00 1 1
impcat_other 69 0.68 1.18 0 5
impcat_all 69 2.35 1.44 1 7
Typology of the study
lit_pr 69 0.70 0.46 0 1
lit_or 69 0.00 0.00 0 0
lit_dir 69 0.09 0.28 0 1
lit_ordir 69 0.09 0.28 0 1
lit_wp 69 0.22 0.42 0 1
year 69 2009.87 0.34 2009 2010
year_07 69 1.00 0.00 1 1
year_09 69 1.00 0.00 1 1
year_10 69 0.87 0.34 0 1
zlab_us 69 0.41 0.49 0 1
zlab_eu 69 0.51 0.50 0 1
zlab_other 69 0.09 0.28 0 1




Table C.3 — Descriptive statistics for the effectize and variables of the econometric G2 sample

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 464 24.15 21.95 -24.00 85.80
es_min 464 -2.40 38.69 -307.59 49.94
es_max 464 50.75 44.47 -19.10 380.55
es_var 464 510.55 2552.67 0.00 27149.13
es et 464 13.62 18.05 0.03 164.77
Technical data
gen_2 464 1.00 0.00 1 1
gen_3 464 0.00 0.00 0 0
etha 464 0.69 0.46 0 1
btl 464 0.31 0.46 0 1
fame 464 0.00 0.00 0 0
hvo 464 0.00 0.00 0 0
mat_algae 464 0.00 0.00 0 0
mat_agrires 464 0.23 0.42 0 1
mat_for 464 0.06 0.23 0 1
mat_enercult 464 0.34 0.47 0 1
mat_farmwood 464 0.11 0.32 0 1
mat_other 464 0.26 0.44 0 1
mat_cult 464 0.45 0.50 0 1
coprod 464 0.89 0.31 0 1
cop_gly 464 0.00 0.00 0 (]
cop_elec 464 0.70 0.46 0 1
cop_heat 464 0.07 0.26 0 1
cop_algmeal 464 0.00 0.00 0 ]
cop_biog 464 0.21 0.41 0 1
cop_other 464 0.14 0.35 0 1
cop_otherelec 464 0.40 0.49 0 1
coprod_num 464 1.12 0.51 0 3
mass_yield_exist 464 0.73 0.44 0 1
g2_mass_yield 341 0.22 0.07 0.07 0.50
eth_expl 321 0.08 0.27 0 1
eth_ac 321 0.83 0.37 0 1
eth_amm 321 0.09 0.28 0 1
eth_other 321 0.00 0.00 0 0
btl_pre_torr 141 0.06 0.23 0 1
btl_pre_pyro 141 0.04 0.20 0 1
btl_pre_none 141 0.90 0.30 0 1
btl_pro_autoth 141 0.88 0.33 0 1
btl_pro_alng 141 0.09 0.28 0 1
btl_pro_alelec 141 0.01 0.08 0 1
btl_pro_alrenew 141 0.03 0.17 0 1
btl_gasrecycl 141 0.01 0.08 0 1
btl_ccs 141 0.00 0.00 0 0]
zloc_us 464 0.31 0.46 0 1
zloc_eu 464 0.67 0.47 0 1
zloc_other 464 0.02 0.13 0 1
Methodological choices
Ica_att 464 0.98 0.15 0 1
Ica_cons 464 0.02 0.15 0 1
wit 464 0.32 0.47 0 1
witw 464 0.68 0.47 (o] 1
infrastruct 464 0.40 0.49 0 1
copval_alloc_ener 464 0.29 0.46 0 1
copval_alloc_mass 464 0.05 0.23 0 1
copval_alloc_markval 464 0.11 0.32 0 1
copval_alloc_exerg 464 0.01 0.08 0 1
copval_alloc 464 0.47 0.50 0 1
copval_systexp 464 0.50 0.50 0 1
copval_hyb 464 0.00 0.05 0 1
gas_num 280 0.21 0.41 0 1
ass_ipcc 445 0.36 0.48 0 1
luc 464 0.58 0.49 0 1
luc_dir 464 0.58 0.49 0 1
luc_indir 464 0.03 0.17 0 1
uncer_ref 464 0.60 0.49 0 1
uncer_MC 464 0.11 0.31 0 1
uncer_SA 464 0.34 0.47 0 1
uncer_MCSA 464 0.45 0.50 0 1
impcat_nev 464 0.33 0.47 0 1
impcat_nrc 464 0.43 0.50 0 1
impcat_nrcnev 464 0.49 0.50 0 1
impcat_gwp 464 1.00 0.00 1 1
impcat_other 464 1.04 2.28 0 9
impcat_all 464 2.80 2.45 1 12
Typology of the study
lit_pr 464 0.61 0.49 0 1
lit_or 464 0.10 0.30 0 1
lit_dir 464 0.02 0.15 0 1
lit_ordir 464 0.13 0.33 0 1
lit_wp 464 0.26 0.44 0 1
year 464 2009.32 1.40 2002 2011
year_07 464 0.96 0.19 0 1
year_09 464 0.89 0.32 0 1
year_10 464 0.53 0.50 0 1
zlab_us 464 0.30 0.46 0 1
zlab_eu 464 0.70 0.46 0 1
zlab_other 464 0.00 0.00 0 0




Table C.4 — Descriptive statistics for the effectize and variables of the econometric G2-Ethanol saple

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 321 26.61 22.26 -23.65 85.80
es_min 321 1.81 41.79 -307.59 49.94
es_max 321 51.45 45.93 -14.10 380.55
es_var 321 532.67 3020.32 0.00 27149.13
es et 321 12.72 19.29 0.03 164.77
Technical data
gen_2 321 1.00 0.00 1 1
gen_3 321 0.00 0.00 0 0
etha 321 1.00 0.00 1 1
btl 321 0.00 0.00 0 0
fame 321 0.00 0.00 0 0
hvo 321 0.00 0.00 0 0
mat_algae 321 0.00 0.00 0 0
mat_agrires 321 0.26 0.44 0 1
mat_for 321 0.02 0.14 0 1
mat_enercult 321 0.31 0.46 0 1
mat_farmwood 321 0.10 0.30 0 1
mat_other 321 0.31 0.46 0 1
mat_cult 321 0.41 0.49 0 1
coprod 321 0.89 0.31 0 1
cop_gly 321 0.00 0.00 0 0
cop_elec 321 0.60 0.49 0 1
cop_heat 321 0.02 0.15 0 1
cop_algmeal 321 0.00 0.00 0 0
cop_biog 321 0.30 0.46 0 1
cop_other 321 0.14 0.35 0 1
cop_otherelec 321 0.44 0.50 0 1
coprod_num 321 1.07 0.48 0 3
mass_yield_exist 321 0.65 0.48 0 1
g2_mass_yield 209 0.25 0.05 0.14 0.50
eth_expl 321 0.08 0.27 0 1
eth_ac 321 0.83 0.37 0 1
eth_amm 321 0.09 0.28 0 1
eth_other 321 0.00 0.00 0 0
zloc_us 321 0.35 0.48 0 1
Zloc_eu 321 0.63 0.48 0 1
zloc_other 321 0.02 0.16 0 1
Methodological choices
Ica_att 321 0.98 0.15 0 1
Ica_cons 321 0.02 0.15 0 1
wit 321 0.36 0.48 0 1
wiw 321 0.64 0.48 0 1
infrastruct 321 0.42 0.49 0 1
copval_alloc_ener 321 0.36 0.48 0 1
copval_alloc_mass 321 0.05 0.22 0 1
copval_alloc_markval 321 0.05 0.22 0 1
copval_alloc_exerg 321 0.01 0.10 0 1
copval_alloc 321 0.47 0.50 0 1
copval_systexp 321 0.50 0.50 0 1
copval_hyb 321 0.00 0.06 0 1
gas_num 177 0.12 0.33 0 1
ass_ipcc 321 0.37 0.48 0 1
luc 321 0.66 0.47 0 1
luc_dir 321 0.66 0.47 0 1
luc_indir 321 0.03 0.17 0 1
uncer_ref 321 0.53 0.50 0 1
uncer_MC 321 0.12 0.33 0 1
uncer_SA 321 0.39 0.49 0 1
uncer_MCSA 321 0.52 0.50 0 1
impcat_nev 321 0.22 0.42 0 1
impcat_nrc 321 0.36 0.48 0 1
impcat_nrcnev 321 0.39 0.49 0 1
impcat_gwp 321 1.00 0.00 1 1
impcat_other 321 0.73 1.81 0 9
impcat_all 321 2.32 1.92 1 11
Typology of the study
lit_pr 321 0.61 0.49 0 1
lit_or 321 0.04 0.19 0 1
lit_dir 321 0.02 0.12 0 1
lit_ordir 321 0.05 0.22 0 1
lit_wp 321 0.33 0.47 0 1
year 321 2009.45 1.26 2002 2011
year_07 321 0.96 0.19 0 1
year_09 321 0.94 0.24 0 1
year_10 321 0.51 0.50 0 1
zlab_us 321 0.34 0.47 0 1
zlab_eu 321 0.66 0.47 0 1
zlab_other 321 0.00 0.00 0 0




Table C.5 — Descriptive statistics for the effectize and variables of the econometric G2-BtL sample

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 143 18.65 20.25 -24.00 85.68
es_min 143 -11.84 28.54 -120.95 43.58
es_max 143 49.19 41.12 -19.10 169.75
es_var 143 460.89 827.83 0.21 5499.18
es_et 143 15.66 14.74 0.46 74.16
Technical data
gen_2 143 1.00 0.00 1 1
gen_3 143 0.00 0.00 0 0
etha 143 0.00 0.00 0 0
btl 143 1.00 0.00 1 1
fame 143 0.00 0.00 0 0
hvo 143 0.00 0.00 0 0
mat_algae 143 0.00 0.00 0 0
mat_agrires 143 0.15 0.36 0 1
mat_for 143 0.15 0.36 0 1
mat_enercult 143 0.41 0.49 0 1
mat_farmwood 143 0.13 0.34 0 1
mat_other 143 0.15 0.36 0 1
mat_cult 143 0.55 0.50 0 1
coprod 143 0.89 0.32 0 1
cop_gly 143 0.00 0.00 0 0
cop_elec 143 0.92 0.27 0 1
cop_heat 143 0.18 0.39 0 1
cop_algmeal 143 0.00 0.00 0 0
cop_bhiog 143 0.00 0.00 0 0
cop_other 143 0.13 0.34 0 1
cop_otherelec 143 0.31 0.47 0 1
coprod_num 143 1.24 0.56 0 2
mass_yield_exist 143 0.92 0.27 0 1
g2_mass_yield 132 0.16 0.06 0.07 0.42
btl_pre_torr 141 0.06 0.23 0 1
btl_pre_pyro 141 0.04 0.20 0 1
btl_pre_none 141 0.90 0.30 0 1
btl_pro_autoth 141 0.88 0.33 0 1
btl_pro_alng 141 0.09 0.28 0 1
btl_pro_alelec 141 0.01 0.08 0 1
btl_pro_alrenew 141 0.03 0.17 0 1
btl_gasrecycl 141 0.01 0.08 0 1
btl_ccs 141 0.00 0.00 0 0
zloc_us 143 0.22 0.42 0 1
zloc_eu 143 0.78 0.42 0 1
zloc_other 143 0.00 0.00 0 0
Methodological choices
Ica_att 143 0.97 0.17 0 1
Ica_cons 143 0.03 0.17 0 1
wit 143 0.24 0.43 0 1
wtw 143 0.76 0.43 0 1
infrastruct 143 0.36 0.48 0 1
copval_alloc_ener 143 0.14 0.35 0 1
copval_alloc_mass 143 0.06 0.24 0 1
copval_alloc_markval 143 0.25 0.44 0 1
copval_alloc_exerg 143 0.00 0.00 0 0
copval_alloc 143 0.45 0.50 0 1
copval_systexp 143 0.48 0.50 0 1
copval_hyb 143 0.00 0.00 0 0
gas_num 103 0.36 0.48 0 1
ass_ipcc 124 0.35 0.48 0 1
luc 143 0.41 0.49 0 1
luc_dir 143 0.41 0.49 0 1
luc_indir 143 0.03 0.17 0 1
uncer_ref 143 0.76 0.43 0 1
uncer_MC 143 0.08 0.27 0 1
uncer_SA 143 0.22 0.42 0 1
uncer_MCSA 143 0.30 0.46 0 1
impcat_nev 143 0.57 0.50 0 1
impcat_nrc 143 0.59 0.49 0 1
impcat_nrcnev 143 0.71 0.45 0 1
impcat_gwp 143 1.00 0.00 1 1
impcat_other 143 1.73 2.99 0 9
impcat_all 143 3.90 3.10 1 12
Typology of the study
lit_pr 143 0.61 0.49 0 1
lit_or 143 0.25 0.44 0 1
lit_dir 143 0.04 0.20 0 1
lit_ordir 143 0.29 0.46 0 1
lit_wp 143 0.10 0.30 0 1
year 143 2009.05 1.63 2002 2011
year_07 143 0.97 0.18 0 1
year_09 143 0.76 0.43 0 1
year_10 143 0.58 0.50 0 1
zlab_us 143 0.22 0.42 0 1
zlab_eu 143 0.78 0.42 0 1
zlab_other 143 0.00 0.00 0 0
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